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Abstract

How well can NLP models generalize to a va-
riety of unseen tasks when provided with task
instructions? To address this question, we first
introduce SUPER-NATURALINSTRUCTIONS,1

a benchmark of 1,616 diverse NLP tasks and
their expert-written instructions. Our collec-
tion covers 76 distinct task types, including but
not limited to classification, extraction, infill-
ing, sequence tagging, text rewriting, and text
composition. This large and diverse collec-
tion of tasks enables rigorous benchmarking of
cross-task generalization under instructions—
training models to follow instructions on a sub-
set of tasks and evaluating them on the remain-
ing unseen ones.
Furthermore, we build Tk-INSTRUCT, a trans-
former model trained to follow a variety of in-
context instructions (plain language task defi-
nitions or k-shot examples). Our experiments
show that Tk-INSTRUCT outperforms existing
instruction-following models such as Instruct-
GPT by over 9% on our benchmark despite be-
ing an order of magnitude smaller. We further
analyze generalization as a function of various
scaling parameters, such as the number of ob-
served tasks, the number of instances per task,
and model sizes. We hope our dataset and
model facilitate future progress towards more
general-purpose NLP models.2

1 Introduction

The NLP community has witnessed great progress
in building models for generalization to unseen
tasks via in-context instructions (Mishra et al.,

1SUPER-NATURALINSTRUCTIONS represents a super-
sized expansion of NATURALINSTRUCTIONS (Mishra et al.,
2022b) which had 61 tasks.

2The dataset, models, and a leaderboard can be found at
https:// instructions.apps.allenai.org.

♦ Co-first authors ♣ Co-second authors

• Input: “Context: … ‘That's fantastic, I'm glad we came to 
something we both agree with.’ Utterance: ‘Me too. I hope you 
have a wonderful camping trip.’”
• Output: “Yes”
• Explanation: “The participant engages in small talk when wishing 

their opponent to have a wonderful trip.”

• Input: “Context: … ‘Sounds good, I need food the most, what is 
your most needed item?!’ Utterance: ‘My item is food too’.”
• Output: “Yes”
• Explanation: “The utterance only takes the negotiation forward 

and there is no side talk. Hence, the correct answer is ‘No’.” 

Definition
“... Given an utterance and recent dialogue context containing past 3
utterances (wherever available), output ‘Yes’ if the utterance
contains the small-talk strategy, otherwise output ‘No’. Small-talk is
a cooperative negotiation strategy. It is used for discussing topics
apart from the negotiation, to build a rapport with the opponent.”

Task Instruction

• Input: “Context: … ‘I am excited to spend time 
with everyone from camp!’ Utterance: ‘That’s 
awesome! I really love being out here with my 
son. Do you think you could spare some food?’ ”
• Expected Output: “Yes”

Positive Examples

Negative Examples

Evaluation Instances

Tk-Instruct

Figure 1: An example task from SUP-NATINST
adopted from Chawla et al. (2021). A successful model
is expected to use the provided instructions (including
task definition and demonstration examples) to output
responses to a pool of evaluation instances.

2022b; Sanh et al., 2022; Wei et al., 2022) using
large pretrained language models (Raffel et al.,
2020; Brown et al., 2020). As remarkable as mod-
els like InstructGPT (Ouyang et al., 2022) are, the
contribution of various design choices to their suc-
cess is opaque. In particular, the role of super-
vised data has remained understudied due to lim-
ited data released by the corporate entities behind
major models. In addition, it is nearly impossible
for the research community to extend and re-train
these gigantic models. Addressing these two chal-
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Resource → SUP-NATINST
(this work)

NATINST
(Mishra et al., 2022b)

CROSSFIT
(Ye et al., 2021)

PROMPTSOURCE
(Bach et al., 2022)

FLAN
(Wei et al., 2022)

INSTRUCTGPT
(Ouyang et al., 2022)

Has task instructions? 3 3 7 3 3 3
Has negative examples? 3 3 7 7 7 7
Has non-English tasks? 3 7 7 7 3 3
Is public? 3 3 3 3 3 7
Number of tasks 1616 61 269 176 62 –
Number of instructions 1616 61 – 2052 620 14378
Number of annotated tasks types 76 6 13 13∗ 12 10
Avg. task definition length (words) 56.6 134.4 – 24.8 8.2 –

Table 1: A comparison of SUP-NATINST to a few notable datasets in the field. We obtain the number of tasks,
instructions, and task types of other datasets from their original paper. “–” indicates the fields are not applicable or
unknown. Standards for categorizing task types vary across different datasets (see Fig. 2). *PROMPTSOURCE does
not provide task type annotation for all their tasks, for which we report only the 13 task types annotated for training
T0 (Sanh et al., 2022) instead.
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Figure 2: Compared to other datasets, SUP-NATINST covers a more diverse range of task types. InstructGPT
reports a very coarse categorization of their task types. Bubble size represents the number of tasks of each type in
log scale.

lenges necessitates the availability of large-scale
public benchmarks of a broad range of NLP tasks
and their instructions to facilitate developing and
evaluating models that can generalize to unseen
tasks.

In this paper, we construct a meta-dataset (i.e.,
dataset of datasets; Triantafillou et al., 2019) that
consists of a wide variety of NLP tasks with their
instructions, and train a model that can perform
a new task given the instruction, outperforming
InstructGPT (which uses 16× more parameters).

Our dataset, SUPER-NATURALINSTRUCTIONS

(SUP-NATINST for short), is a large benchmark of
1,616 NLP tasks and their natural language instruc-
tions. It brings in a diverse variety of tasks—76
broad task types spanning 55 different languages.
Each task is paired up with an instruction that con-
sists of the task definition for mapping an input text

to a task output and several examples for demon-
strating the desired or undesired output (see Fig.1
as an example task). These tasks and their instruc-
tions are contributed by 88 NLP practitioners, in
response to our public call. These contributions are
consolidated after several rounds of peer-review
and crowdsourced feedback to ensure quality. Hav-
ing this diverse and large-scale data enables us
to carefully split the tasks into training and test
sets and systematically study how state-of-the-art
methods perform on them. Table 1 and Figure 2
highlight properties of SUP-NATINST compared to
relevant benchmarks, emphasizing the diversity of
tasks and instruction types in our benchmark.

Our model, Tk-INSTRUCT, is a generative
model for transforming task inputs given declar-
ative in-context instructions (task definition or k-
shot examples). It is built by multi-task training



of the T5 model (Raffel et al., 2020) over all the
task instructions in our training set, and is eval-
uated on unseen tasks in the test set. Interest-
ingly, an 11B-parameter Tk-INSTRUCT can out-
perform the 175B-parameter InstructGPT model
by 9.9 ROUGE-L points when evaluated on 119
unseen English tasks, and the multilingual variant
mTk-INSTRUCT outperforms InstructGPT by 13.3
points on 35 non-English tasks (§6.1). According
to human evaluation, Tk-INSTRUCT generates re-
sponses at least as well as the ground truth for 77%
of the testing instances (§6.2), confirming its strong
generalization to unseen tasks.

The compelling empirical performance of Tk-
INSTRUCT confirms the importance of super-sized
meta datasets such as our SUP-NATINST to facil-
itate research towards generalizable NLP models.
We conduct extensive analysis to understand the
important factors for this generalization (§7). Our
analysis shows that scaling up the diversity of train-
ing tasks and the model size are both important
for strong generalization to unseen tasks. Finally,
we estimate performance upper bounds, suggesting
further room for improvement.

2 Related Work

Language instructions are a versatile way of defin-
ing goals, which is why they have been studied
in the context of a variety of applications, such
as instructions in grounded environments (Shrid-
har et al., 2020; Stepputtis et al., 2020; Min
et al., 2022b; Weir et al., 2022) and database com-
mands (Kim et al., 2020). Here, we focus on appli-
cations of instructions for general NLP tasks.

Recent literature has been motivated by building
models that are generalizable across a variety of
NLP tasks, when prompted with either a few ex-
amples (Ye and Ren, 2021; Bragg et al., 2021) or
language definitions (Efrat and Levy, 2020; Weller
et al., 2020; Zhong et al., 2021; Mishra et al.,
2022b,a; Parmar et al., 2022). Our work is re-
lated to the existing benchmarks in this line of
work, as delineated in Table 1 along various dimen-
sions. Our benchmark extends NATINST (Mishra
et al., 2022b) with 26× more tasks and greater va-
riety of task types (Fig. 2). While CROSSFIT (Ye
et al., 2021) focuses on benchmarking with a few
in-context examples, our benchmark also offers
task instructions.

Concurrent to our work, PROMPTSOURCE

(Bach et al., 2022) is another benchmark of tasks

and their language instructions (prompts). An im-
portant distinction between this benchmark and
ours is the phrasing of the task definitions: while
PROMPTSOURCE task definitions are relatively
concise, our task definitions are collected with the
intention of providing a complete definition of each
task and therefore are longer (24 tokens vs. 56 to-
kens on average; Table 1). More recently, BIG-
BENCH (Srivastava et al., 2022) introduces a col-
lection of 204 tasks and also provides short task
descriptions and input prefixes that can be used for
prompting LMs. With little overlap to our collec-
tion of tasks, they focus more on finding challeng-
ing tasks that can be used to test different behaviors
of current LMs. Nevertheless, we believe that all
these efforts in collecting different tasks as well as
the task instructions are complementary, and the
community will benefit from considering different
benchmarks. Finally, the well-adopted InstructGPT
model (Ouyang et al., 2022) is partially enabled
by a large dataset of prompts that are collected via
various synthetic data augmentation which, unfor-
tunately, is not publicly available.

Beyond cross-task generalization, our bench-
mark can also be used to study multi-task learn-
ing more broadly, which is a longstanding goal for
AI (Caruana, 1997). Traditionally, this literature fo-
cuses on setups that involve evaluation on tasks that
are observed during training (Collobert and Weston,
2008; Hashimoto et al., 2017). More recent studies
show promise that large-scale multi-task learning
can enable strong generalization to similar tasks via
unified encoding (Khashabi et al., 2020; Xie et al.,
2022) or better finetuning results on downstream
tasks (McCann et al., 2018; Aribandi et al., 2022).
Our proposed benchmark provides diverse tasks for
studying multi-tasking at a massive scale.

3 SUPER-NATURALINSTRUCTIONS

SUPER-NATURALINSTRUCTIONS is a meta-
dataset (Triantafillou et al., 2019) consisting of a
variety of NLP tasks (see Fig. 2a) and instructions
that describe them in plain language.

Instruction schema. All task instructions follow
the same uniform schema (see Fig. 1) which is
composed of the following parts:
• DEFINITION defines a given task in natural lan-

guage. This is a complete definition of how an
input text (e.g., a sentence or a document) is ex-
pected to be mapped to an output text.

• POSITIVE EXAMPLES are samples of inputs and



their correct outputs, along with a short explana-
tion for each.

• NEGATIVE EXAMPLES are samples of inputs
and their incorrect/invalid outputs, along with
a short explanation for each.

The above schema is based on that of Mishra et al.
(2022b), though it is simplified. See Appendix C
for the comparison.
Task instances. Given the instructions for each
task, a model is expected to solve instances of that
task. We use a unified format to organize the in-
stances of all our tasks. More precisely, each in-
stance consists of a textual input and a list of ac-
ceptable textual outputs. We limit the number of
instances in each task to 6.5K to avoid an imbal-
ance of instances between tasks.
Benchmark collection. The benchmark was
collected through a large community effort on
GitHub.3 Tasks were collected and contributed by
NLP practitioners who were either responding to
our public invitation4 or students who were encour-
aged to contribute as part of their class project.5

Contributors were encouraged to be creative and
source the tasks from several resources: (a) exist-
ing public NLP datasets, (b) available intermediate
annotations in crowdsourcing experiments (e.g.,
paraphrasing questions or rating their quality dur-
ing crowdsourcing a QA dataset), or (c) synthetic
tasks that can be communicated to an average hu-
man in a few sentences (e.g., basic algebraic opera-
tions like number comparison, finding the longest
palindrome substring, etc.). When using existing
datasets or crowdsourcing annotations, contribu-
tors were encouraged to adopt the instructions used
to create this dataset whenever available. This was
done to ensure that the instructions were sufficient
to define the tasks to average human readers. Tasks
along with instructions and other meta information
were contributed as JSON files via GitHub pull re-
quests, which were reviewed by automated checks
and peers. We had 88 contributors from diverse
locations and backgrounds contribute to our reposi-
tory.
Quality control. Controlling the quality of this
community-contributed data was done in several
phases: (1) Upon creating a GitHub pull request
of the proposed task, it immediately went through
an automatic test. This process verified that the

3https://github.com/allenai/natural-instructions
4https://blog.allenai.org/9d3f24d5a9db
5CSE 576 “Topics in NLP” course, Arizona State Univ.

introduced file contained the expected fields and
adhered to our desired properties (e.g., no duplicate
instances, the output labels are not heavily imbal-
anced, etc.) and (2) The proposed task was then
peer-reviewed by 1–2 other expert contributors to
ensure the clarity and sufficiency of instruction con-
tent. The review process was done iteratively until
the reviewers were content with the quality of the
proposed instruction. Specifically, reviewers were
asked to verify that the instruction is clear and suf-
ficient for an average language speaker to solve the
underlying task (evaluation instances) while being
grammatical, fluent, and concise. On average, the
review of each GitHub pull request took about 4–
6 iterations over the span of multiple days before
being merged. (3) Lastly, the added tasks were pre-
sented to crowdworkers in order to collect feedback
on the quality of the provided instructions, such as
typos, clarity, or other issues (details in §A). Sub-
sequently, one of the authors used this feedback to
improve the task definitions of the instances. This
feedback was done only for English tasks, as find-
ing high-quality crowdworkers in other languages
is nontrivial (Pavlick et al., 2014).

Diversity of tasks. Collecting tasks for SUP-
NATINST was carefully supervised to cover a wide
variety of natural language understanding tasks, do-
mains, and languages. To better understand this di-
versity, we comprehensively categorize tasks along
three different dimensions:

• TASK TYPE defines the nature of the mapping
from instance inputs to outputs (e.g., question
answering, classification, etc.).

• LANGUAGE indicates the language(s) of the in-
stances.

• DOMAIN indicates the domain(s) to which
the text of the tasks belong to (e.g., politics,
medicine, dialogue, etc.).

These different measures of categorization can be
used to study different senses of generalization. In
our empirical studies (§5), we study generalization
along the axis of task types. We refer the reader
to Fig. 10 in the appendix for the distribution of
tasks among different task types, languages, and
domains.

Statistics. Table 2 shows various statistics for the
benchmark. In total, the dataset includes 1616 tasks
and 5M instances. On average, each instruction is
paired with 2.8 positive and 2.4 negative examples.
The average definition length is 56.6 in words.

https://github.com/allenai/natural-instructions
https://blog.allenai.org/9d3f24d5a9db


statistic

# of tasks 1616
# of task types 76
# of languages 55
# of domains 33
# of non-English tasks 576
avg. definition length (words per task) 56.6
avg. # of positive examples (per task) 2.8
avg. # of negative examples (per task) 2.4
avg. # of instances (per task) 3106.0

Table 2: Statistics of SUP-NATINST.

4 Tk-INSTRUCT: Learning to Follow
Instructions at Scale

Defining Generalization to Unseen Tasks. Each
task t is defined via its natural language instruction
It, and each task has a set of input/output instances
(Xt, Yt). A model M is expected to produce the
output y, given the input x and the task instruction
It: M(It, x) = y, for (x, y) ∈ (Xt, Yt). In partic-
ular, we would like to evaluate model M on tasks
that are not observed (i.e., their instances were not
used for training M ). The only source of signal
for learning the task at inference time is in-context
instructions It that contain a definition and demon-
stration examples of the task.

Tk-INSTRUCT. We introduce Tk-INSTRUCT, a
model that is meta-trained on SUP-NATINST for
solving tasks given their in-context instructions.
Previous work has shown the effectiveness of such
meta-training in improving model’s ability to do in-
context learning with either prompts (Zhong et al.,
2021; Sanh et al., 2022) or demonstration examples
(Min et al., 2022a). Because of the large variety
of tasks in SUP-NATINST, we are able to do this
multi-task meta-training at a larger scale than be-
fore. We conduct our experiments and analysis
based on the T5 model (Raffel et al., 2020). Since
each instruction It consists of multiple elements as
described in our instruction schema (§3), we map
these elements to textual format and append them
before the input instance. Fig. 8 in the appendix
shows how we encode the full instructions. We
study different combinations of these instruction
elements in §7.2. By default, we will use our most
effective instruction elements (i.e., task definition
and two positive examples) unless otherwise speci-
fied. In the same manner, we train the multilingual
variant mTk-INSTRUCT based on the mT5 model
(Xue et al., 2021).

5 Benchmarking Cross-Task
Generalization with SUP-NATINST

Here we provide our recommended recipe for
benchmarking generalization via SUP-NATINST.

5.1 Evaluation Setup
An Evaluation Split of Unseen Tasks. We split
the large collection of tasks in SUP-NATINST into
two subsets: one for evaluation and the other for su-
pervision. For evaluation tasks, we fix a manually-
selected collection of 12 categories that represent
154 tasks. The large variety of tasks in SUP-
NATINST enables us to choose a diverse set of tasks
for evaluation – such as those at word, sentence,
and document levels, covering both classification
and generation formats. Appendix G lists our eval-
uation tasks with examples for representative tasks.
For an efficient evaluation, we sample a maximum
of 100 instances for each task, which results in
15,310 testing instances in total. The remaining
tasks are used for training models.6

Divided Tracks for English and X-lignual Tasks.
SUP-NATINST consists of tasks across multiple
languages, which enables evaluating the model’s
generalization to unseen tasks not only in English
but also in other languages. Therefore, we divide
our evaluation tasks into two tracks: one for En-
glish cross-task generalization (119 tasks) and
the other for cross-lingual cross-task generaliza-
tion (35 tasks). To the best of our knowledge, this
is the first study in cross-lingual cross-task gen-
eralization (i.e., generalization to unseen tasks in
different languages). Fig. 11 and Fig. 12 in the ap-
pendix contain the evaluation tasks for each track.
Evaluation Metrics. Due to the diversity of our
tasks and the open-ended generation nature of our
formulation,7 we adopt ROUGE-L (Lin, 2004) for
reporting aggregated performance results. This is a
soft string overlap metric that can be applied to a
wide range of text generation tasks. We show that
the ranking from this metric correlates well with
accuracy for classification tasks in Appendix E. We
also conduct a human evaluation in §6.2.

6To avoid data leakage, we exclude tasks from the training
set if they are sourced from the same dataset as any test task.
This results in 757 training tasks for the English track and
1271 training tasks for the cross-lingual track.

7Unlike Sanh et al. (2022) and Wei et al. (2022), who
evaluate their models on classification tasks via option ranking
(i.e., scoring the correct answer(s) higher than other candidate
answers), we evaluate our models in an open-ended generation
setting with no task-specific assumptions. We believe this is a
more realistic measure of generalization to unseen tasks.



5.2 Baselines and Existing Models

Here we discuss a variety of baselines and com-
petitive models for our target application. See Ap-
pendix D for implementation details.

Heuristic baselines. We first evaluate the follow-
ing heuristics to evaluate the possible shortcuts in
the data. Copying Demo Output copies the output
of a random demonstration example. Since we bal-
ance the labels for our test tasks, the performance of
this baseline will roughly equal a random guess or
a majority baseline for classification tasks. Copy-
ing Instance Input copies the given instance in-
put. This strategy performs well on tasks where the
target output largely overlaps with the input (e.g.,
question rewriting, grammar error correction).

Off-the-shelf pretrained language models. We
evaluate existing LMs that are not fine-tuned with
instruction-specific data. Specifically, we evalu-
ate the 11B-parameter T5 (Raffel et al., 2020) as
a direct counterpart of Tk-INSTRUCT. Due to the
infilling pretraining objective of the original T5
model, it cannot continue text well. Therefore,
we evaluate its “LM-adapted” version, which is
further trained with a language modeling objec-
tive (Lester et al., 2021). Additionally, we evaluate
GPT-3 (Brown et al., 2020), a 175B-parameter au-
toregressive LM that has shown remarkable ability
in following demonstrations provided in its prompt.

Instruction-tuned models. In addition to our Tk-
INSTRUCT (§4), we evaluate existing models that
are fine-tuned to follow language instructions. In
particular, we evaluate InstructGPT (Ouyang et al.,
2022) which uses reinforcement learning to incor-
porate human preferences into a GPT-3 pretrained
model, and T0 (Sanh et al., 2022) which finetunes
T5 on a collection of task prompts in PROMPT-
SOURCE (Bach et al., 2022).

Upper bound estimates. We estimate an upper
bound on models’ generalization to unseen tasks by
fine-tuning an oracle model on the tasks’ labeled
instances. Since this model observes the hidden
instances of the evaluation tasks, it is, by definition,
an estimated upper bound to our generalization-
based models. Specifically, we fine-tune a T5-11B
model on the 119 English evaluation tasks, and
a mT5-13B model on the 35 non-English tasks,
with 1K random training instances per task, without
overlap with the evaluation instances.

Methods ↓ / Evaluation→ En X-lingual

Heuristic
Baselines

Copying Instance Input 14.2 5.4
Copying Demo Output 28.5 50.3

Pretrained LMs
T5-LM (11B) 30.2 –
GPT3 (175B) 45.0 51.3

Instruction-tuned
Models

T0 (11B) 32.3 –
InstructGPT (175B) 52.1 52.8
Tk-INSTRUCT (ours, 11B) 62.0 –
mTk-INSTRUCT (ours, 13B) 57.1 66.1

Upper-bound (est.) Supervised Training 74.3 94.0

Table 3: The overall performance of different methods
on unseen tasks in the test set of SUP-NATINST (§6.1).
We report ROUGE-L here as our aggregated metric.
Models that leverage instructions show stronger
generalization to unseen tasks. In particular, our
model that is fine-tuned on a diverse set of tasks out-
performs InstructGPT and T0 by a large margin.
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Figure 3: Human evaluation vs. ROUGE-L for several
methods (§6.2). The trends of these two metrics are
highly correlated with a Pearson coefficient of 0.998.

6 Experimental Results

6.1 Overall Results

Table 3 summarizes our overall benchmarking re-
sults. We use the same input encoding that contains
the most effective instructional elements (task defi-
nition and two positive examples without the nega-
tive examples and explanations) for all the methods.
To better understand models’ generalization to dif-
ferent tasks, we also break down the performance
according to the task categories in Fig. 4. We refer
the reader to Appendix H for more detailed analysis
on each individual task.

Instruction-tuning enables stronger generaliza-
tion to unseen tasks. Generally instruction-tuned
models perform better compared to their untuned
LM counterparts (Tk-INSTRUCT vs. T5-LM, In-
structGPT vs. GPT-3) and heuristic baselines. This
indicates models do learn to follow instructions by
finetuning on instruction data, and this can gen-
eralize to new instructions for unseen tasks. T0
is an exception, which is only slightly better than
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Figure 4: Performance per evaluation task type. Tk-INSTRUCT consistently performs better than other
generalization-based methods on all task types, while there is still a sizable gap compared to supervised training.

T5-LM. We suspect this is because the style of
prompting in T0’s training data is very different
from our style of instructions.

Our Tk-INSTRUCT outperforms InstructGPT.
Our Tk-INSTRUCT and mTk-INSTRUCT models,
which are trained with a variety of tasks, gener-
alize best to unseen tasks for both English and
non-English tasks in all evaluation task categories.
InstructGPT also shows a great extent of general-
ization to our evaluation tasks. However, we want
to note it is not clear if InstructGPT’s training data
overlaps with our evaluation tasks since their data
is unavailable.

There is a sizable gap for improvement. De-
spite the impressive performance of current models,
there is a sizable gap between the generalization of
instruction-based models and the supervised train-
ing approach, leaving more room for improvement.

6.2 Human Evaluation

For language generation tasks, automatic metrics
are only an approximation of human judgments;
we conduct a human evaluation to confirm the find-
ings so far. Specifically, we ask crowdworkers to
indicate if they prefer the predicted answer by the
model or the ground truth outputs for each instance
with ties being allowed (see Appendix B for de-
tails). The resulting human evaluation metric indi-
cates how often model predictions were rated as at
least as good as our ground truth labels. The theo-
retical upper bound of this metric is 100% when the
model is rated at least as good as the ground truth
for all the instances. The results of human evalua-
tion (shown in Fig. 3) align quite well with our au-
tomatic metrics and confirm the human-perceived
quality of our models.

7 Further Analysis

We conduct further analysis to understand the im-
portant factors for models to generalize across tasks.
Due to the computational cost, this analysis is done
on the English track and using the T5-3B check-
point, except for the experiments on model sizes.

7.1 Scaling Trends of Generalization

We study Tk-INSTRUCT’s generalization perfor-
mance with respect to three scaling factors: the
number of training tasks, the number of instances
per task, and the model sizes. Fig. 5 presents the
performance change by scaling each of them.

More observed tasks improve the generaliza-
tion. We fine-tune Tk-INSTRUCT with different
numbers of tasks that are randomly sampled from
the whole training set (Fig. 5a). The model gen-
eralization performance grows log-linearly8 as we
increase the set of tasks used for training. Previous
work (Mishra et al., 2022b; Sanh et al., 2022; Wei
et al., 2022) has made similar observations on a
much smaller scale, while we show that this trend
holds even with 757 diverse training tasks.

A large number of training instances do not
help generalization. We then vary the number
of instances per task that are used for finetuning
(Fig. 5b). While the conventional wisdom in super-
vised learning is that more training instances usu-
ally helps (Banko and Brill, 2001; Sun et al., 2017;
Hestness et al., 2017), in our setup, the model’s
performance saturates when only 64 instances per
task are used for training. A large number of train-
ing instances would instead lead to longer training
time and risk overfitting to the training tasks.

8A linear function of an exponential increase of parameters,
i.e., growth at a constant multiplicative rate.
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Testing Encoding →

Training Encoding ↓
Task ID Def Pos (1) Def

+ Pos (1) Pos (2)  Def
+ Pos (2) 

Def 
+ Pos (2) 
+ Neg (2) 

Def
+ Pos (2) 
+ Neg (2) 

+ Expl

Pos (4) Def 
+ Pos (4) Average

Task ID 21.2 33.3 16.8 30.9 23.0 33.7 33.9 31.6 26.0 36.4 33.9
Def 17.3 45.0 31.1 43.8 36.4 46.4 44.2 44.3 38.0 46.0 39.9

Pos (1) 10.9 22.1 43.9 47.8 46.6 49.2 46.2 43.4 46.6 49.5 43.1
Def + Pos (1) 11.1 42.2 43.8 52.4 47.4 53.3 53.1 51.8 47.8 53.7 44.5

Pos (2)  12.7 22.4 47.1 50.2 49.3 52.3 50.6 46.7 49.8 52.4 45.0
Def + Pos (2) 12.4 42.1 44.5 52.4 49.0 54.3 53.5 52.7 50.3 54.8 46.4

Def + Pos (2) + Neg (2)  14.0 42.3 43.6 51.8 48.6 53.5 54.3 50.2 49.6 53.8 45.9
Def + Pos (2) + Neg (2) + Expl 15.4 42.0 43.8 50.7 47.6 51.9 52.5 52.6 48.6 52.2 44.3

Pos (4) 11.0 23.9 45.6 49.8 49.0 51.7 49.5 47.5 49.8 51.3 44.5
Definition  + Pos (4) 11.0 42.4 44.3 51.9 48.7 53.7 53.4 50.6 50.5 53.5 46.0

Table 4: Performance (ROUGE-L) of models trained and evaluated with various encodings. Diagonal numbers
(underlined) represent performances of models trained and evaluated with the same instruction encoding. Each
encoding is a combination of the elements in the instructions (Fig. 1). Task ID is a short string composed of
dataset name and task category; Def represents the task definition; Pos (k) represents k positive examples; Neg
(k) represents k negative examples; Expl represents explanation. These results (a) show the gains from various
instructional elements, and (b) indicate surprising reliability of the models to various input encoding. A
model trained with definition and positive examples (i.e., the last row) remains robust for different encodings.

Tuning larger models with instructions consis-
tently lead to gains. We study the effect of model
scaling by initializing Tk-INSTRUCT from differ-
ent sizes of pretrained T5 checkpoints, including
the small, base, large, xl and xxl sizes (Fig. 5c). We
found that increasing the model sizes consistently
bring significant improvement (log-linearly with
parameter size). This finding contradicts the claim
in Xu et al. (2022) that “model size has little im-
pact on performance with an extremely large num-
ber of tasks.” Combining Fig. 5(a) and Fig. 5(c),
one can create a correspondence between model
size and task size. For example, a T5-large model
trained with 757 tasks can achieve comparable per-
formance (48.0 ROUGE-L) to the T5-3B model
trained with 128 tasks (48.4 ROUGE-L), indicating
that increasing the diversity of training tasks is an
alternative to scaling model sizes.

7.2 Instructing with Different Elements

We evaluate the performance of Tk-INSTRUCT un-
der different instructional elements.

Benefit of different instructional elements. As
shown in Fig. 1, SUP-NATINST provides multiple
elements for instructing a task. We train multiple
models with different combinations of these ele-
ments. The diagonal cells of Table 4 show the
performance of our models when trained and eval-
uated on a particular instruction encoding. Based
on the diagonal numbers, including the task defi-
nition consistently helps the model to generalize
better. Moreover, combining the task definition
with positive demonstration examples yields fur-
ther improvement. However, adding more demon-
stration examples is negligible. Negative examples
help a little bit; explanations decrease performance,
which is consistent with the observations of Mishra
et al. (2022b) and Lampinen et al. (2022) when



the model is not large enough. Future work can
explore whether more powerful models can benefit
from these elements.

Generalization to different input encodings. We
further investigate whether a model trained on a par-
ticular encoding can generalize to other encodings.
This can be read from the non-diagonal cells of
Table 4. The negative result here is that definition-
only models cannot generalize to example-only
test encodings; and similarly, example-only models
cannot generalize to definition-only test encodings.
However, models trained on encodings that con-
tain both definition and examples are surprisingly
robust across different encoding variations.

8 Conclusion

We construct a large-scale benchmark consisting
of a diverse set of NLP tasks and their instructions.
This benchmark can serve as a rich playground for
training or evaluation of models that can generalize
to unseen tasks by following instructions. Further-
more, we train Tk-INSTRUCT using this data, and
demonstrate its capability to perform unseen tasks
to a surprising extent. We provide extensive anal-
ysis to understand the important factors for such
generalization. We hope our data and model will fa-
cilitate future work towards more general-purpose
models.

9 Limitations

While the presented data offers a notable variety
(e.g., diverse task types), its underlying distribu-
tions suffer from skews which should be addressed
in future work (see Appendix F). On language di-
versity, the proposed benchmark is biased toward
English. On output diversity, the collected tasks
are generally still skewed to short responses, which
might reflect the distribution of the available tasks
in the field. This under-representation of the long-
tail of tasks poses a challenge for building general-
purpose models in the future. We hope future work
addresses such distributional imbalances. More-
over, we see natural extensions of the instruction-
following setup here in the context of other modali-
ties such as vision or speech.

Automatic evaluation of models’ performance
is another challenge, considering the diverse set of
tasks in our benchmark, and many of them being
open-ended generation tasks. We use ROUGE-L as
an aggregated metric in this paper and find it as a
good proxy for the overall performance of the mod-

els, aligning well with human evaluation. However,
there are specific tasks for which ROUGE-L might
not serve as an effective proxy of quality (such
as rewriting tasks or error correction tasks where
copying the input can result in a high ROUGE-L
score). We hope these issues will be addressed
with the development of more powerful evaluation
metrics for text generation.

In terms of computing power, we have experi-
mented with models that were accessible to us and
have made the resulting models publicly available.
We also acknowledge that there are larger models
that we were not able to train due to the limitations
of our computational budget.
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Supplemental Material

A Crowdsourcing Human Feedback

We use Amazon Mechanical Turk (AMT) to crowd-
source feedback on the quality of the collected
instructions. We limit our crowdworkers to pre-
dominantly English-speaking countries (USA, UK,
Canada, and Australia), and to those who have fin-
ished over 1K HITs with an approval rating of over
99%.

Fig. 6 shows the crowdsourcing template used
for collecting crowdworker feedback on our in-
structions. We show the instructions (the task defi-
nition, along with positive and negative examples)
followed by forms for their feedback. We allow
the crowdworkers to give us a qualitative measure
of their perceived quality as well as text boxes for
more concrete items (such as typos or phrasings
that may benefit from more clear articulation). For
each task, we solicit the feedback of 3 crowdwork-
ers and then use this feedback to improve the task
definitions or the examples for each task.

B Crowdsourcing Human Judgements of
Generation Quality

We perform a crowdsourcing experiment on Ama-
zon Mechanical Turk (AMT) to assess the quality
of the generated responses of models. Specifically,
we ask crowdworkers to indicate if they prefer the
predicted answer by the model or the ground truth
outputs for each instances. The annotation inter-
face is shown in Fig. 7. It is essentially the same
template used for the quality assessment of the
dataset (§A), except that here the crowdworkers
are shown a pair of responses for each instances—
the reference text (from our benchmark) and the
one generated by the model—turning the task into
a comparative evaluation.

For each instance, we obtain annotations from
an annotator as to whether they prefer either re-
sponse over the other or they would rate them
equally (“tie”). The model receives a credit of 1.0
if the worker favors the model’s prediction at least
as well as the ground truth label (otherwise, the
model would receive a credit of 0.0). The overall
accuracy score for the model is computed by av-
eraging instance-level scores. To reduce the costs,
the human evaluation of our models is done on 60
randomly selected tasks (about half of our evalu-
ation tasks), and on 10 random instances of each
task.

Since it is non-trivial to find non-English speak-
ing crowdworkers (Pavlick et al., 2014), this eval-
uation was restricted to English language tasks.
Therefore, since our task is focused on English
tasks, we required workers to be based in a country
with a population predominantly of native English
speakers (USA, Canada, UK, and Australia) and
have completed at least 5000 HITs with ≥99% as-
signment approval rate.

The resulting human-evaluation metric indicates
how often were model predictions equal or pre-
ferred to our ground truth labels. In this evaluation,
the theoretical upper bound is 100% where the
model is rated at least as well as the ground truth.
The results of human evaluation are shown in the
bottom row of Fig. 3.

C Instruction Schema

Our instruction schema is based on that of
NATINST (Mishra et al., 2022b), but we sim-
plify it to make data collection easier. Our
DEFINITION field serves as the union of Mishra
et al. (2022b)’s DEFINITION, THINGS TO AVOID,
and EMPHASIS & CAUTION. Additionally, we
drop their TITLE and PROMPT as their content is
most often covered by DEFINITION.

D Model Implementation Details

T5 experiments. We use T5 for training our Tk-
INSTRUCT, estimating the performance of the su-
pervised approach and conducting analysis.

Our experiments that finetune the T5-11B model
are conducted based on the Google’s T5 library9

and we use their T5.1.1.xxl checkpoint10 by default,
which is pre-trained only on C4.11 These experi-
ments are run on Google V3-256 TPUs using a
batch size of 1,048,576 tokens (1,024 examples), a
constant learning rate of 1e-5 and a total of 1000
steps. Each training run takes 4 hours to complete.

Our analyses that use T5 models smaller than
11B parameters are conducted based on Hug-
gingface’s transformers library and model check-
points12 (Wolf et al., 2020) on GPU machines.

9https://github.com/google-research/
text-to-text-transfer-transformer

10https://console.cloud.google.com/storage/browser/
t5-data/pretrained_models/ t5.1.1.xxl

11We also tried to finetune Tk-INSTRUCT from the T5-LM
checkpoint but the final performance is worse. Therefore, we
decided to use the T5.1.1.xxl checkpoint.

12https://huggingface.co/models?sort=downloads&
search=google%2Ft5

https://github.com/google-research/text-to-text-transfer-transformer
https://github.com/google-research/text-to-text-transfer-transformer
https://console.cloud.google.com/storage/browser/t5-data/pretrained_models/t5.1.1.xxl
https://console.cloud.google.com/storage/browser/t5-data/pretrained_models/t5.1.1.xxl
https://console.cloud.google.com/storage/browser/t5-data/pretrained_models/t5.1.1.lm100k.xxl?pli=1
https://console.cloud.google.com/storage/browser/t5-data/pretrained_models/t5.1.1.lm100k.xxl?pli=1
https://huggingface.co/models?sort=downloads&search=google%2Ft5
https://huggingface.co/models?sort=downloads&search=google%2Ft5


Figure 6: The crowdsourcing template we use to receive feedback on our collected tasks.

Figure 7: Crowdsourcing interface used for human assessment of our baselines (§6.2).

When fine-tuning models, we train them for two
epochs with a batch size of 16 and a constant learn-
ing rate of 1e-5. The maximum input length is
set to 1024, and the maximum output length is set
to 128. These experiments are conducted with 8
A100 GPUs with 48GB GPU memory per each. We
use DeepSpeed13 for model parallelization, with
bfloat16 precision enabled to save the GPU mem-

13https://github.com/microsoft/DeepSpeed

ory. Each training run takes 6 hours to complete.

GPT-3 and InstructGPT experiments. We use
the OpenAI API14 for conducting the GPT-3 ex-
periments. We use their “davinci” engine for the
GPT-3 language model experiments and their “text-
davinci-001” engine for the InstructGPT experi-
ments. When making the requests, we set the tem-
perature as 0, top_p as 1 and the maximum gen-

14https://beta.openai.com/docs/ introduction/overview

https://github.com/microsoft/DeepSpeed
https://beta.openai.com/docs/introduction/overview


eration length as 128. Due to the high cost, we
randomly sample 20 instances from each of our
119 test tasks to estimate the performance of GPT-
3 and InstructGPT. All API requests were made on
May 30, 2022.

Encoding instruction with input For every
problem setup, we map a given instruction It and
an input instance x into a textual format, obtaining
enc(It, x). Each instruction It consists of multiple
elements as described in our instruction schema
(§3). We map each element of the instruction to a
textual format and prepend it to the input instance.
Fig. 8 shows how we encode the full instruction.
We study different combinations of these instruc-
tion elements in §7.2. The encoded instance is
then fed to an encoder-decoder model to predict y:
M : enc(It, x)→ y.

Definition : {{definition}}
Positive Example 1−

input : {{p_ex1.input}}
output : {{p_ex1.output}}
explanation : {{p_ex1.exp}}

Positive Example 2−
· · ·

Negative Example 1−
input : {{n_ex1.input}}
output : {{n_ex1.output}}
explanation : {{n_ex1.exp}}

Negative Example 2−
· · ·

Now complete the following example−
input : {{x.input}}
output :

Figure 8: Encoding task instruction with input.

E Evaluation Metrics

We adopt ROUGE-L as our automatic evaluation
metric in this work. However, it remains a question
for how much ROUGE-L can reflect model’s per-
formance on different tasks. Although we cannot
test ROUGE-L’s correlation with each task-specific
metric of the tasks included in our data, we do in-
vestigate whether ROUGE-L can be used for clas-
sification tasks. Fig. 9 plots the ROUGE-L scores
and accuracy of several models on different types
of tasks. These task types are usually regarded as
classification tasks and have very short ground truth
output. We can see that for all these task types, the
trend of ROUGE-L correlates well with the trend of
accuracy. For some task types, we do see some gap
between these two metrics. The reason is because

there are some generation tasks categorized into
these types. These results indicate that ROUGE-
L is a good proxy for accuracy for classification
tasks.

F Distribution of Tasks

As is described in §3, SUP-NATINST provides the
annotation for categorizing tasks along three differ-
ent dimensions: task type, language, and domain.
Fig. 10 shows the distribution of tasks among these
three dimensions. This meta-information can be
used to study model’s generalization ability in dif-
ferent senses. Despite the diversity of the data, we
acknowledge the skew toward certain tasks and lan-
guages, which we leave to be addressed by future
work.

G Evaluation Tasks

Table 5 lists the 12 task categories used for our eval-
uation and all the tasks included in each category
(introduced in §5.1). To provide a better sense of
what those tasks look like, we also select one rep-
resentative task from each category and list them
in Tables 6–17. Due to the large number of tasks
in our dataset, we cannot list all 1,616 tasks in this
paper. We refer the reader to our dataset.

H Performance Improvement per
Evaluation Task

To provide more detailed analysis of Tk-INSTRUCT

on each individual task, Fig. 11 presents the
per-task improvement of our Tk-INSTRUCT (3B)
model over the best of two heuristic baselines on
the English evaluation tasks, and Fig. 12 presents
the per-task improvement of the mTk-INSTRUCT

model on the cross-lingual evaluation tasks. For
most of the evaluation tasks, we see a notable ex-
tent of generalization by Tk-INSTRUCT.
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Figure 9: Rouge-L v.s. Accuracy for task types that are usually regarded as classification tasks. The trends of these
two metrics are highly correlated with a Pearson coefficient of 0.970.
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Figure 10: Distribution of SUP-NATINST tasks in terms of their (a) task types (b) languages (c) domains. y-axes
are in log scale.



Task Category Metric List of Tasks
Textual
Entailment

Exact Match task937_defeasible_nli_atomic_textual_entailment
task202_multinli_textual_entailment
task936_defeasible_nli_atomic_textual_entailment
task641_e_snli_textual_entailment
task1344_rte_textual_entailment
task1615_sick_textual_entailment
task1385_anli_textual_entailment
task935_defeasible_nli_atomic_textual_entailment
task199_multinli_textual_entailment
task1388_cb_textual_entailment
task1554_scitail_textual_entailment
task640_e_snli_textual_entailment
task534_farstail_textual_entailment
task201_multinli_textual_entailment

task1386_anli_textual_entailment
task463_pasinlu_textual_entailment
task1387_anli_textual_entailment
task738_perspectrum_textual_entailment
task1529_scitailv1.1_textual_entailment
task190_snli_textual_entailment
task200_multinli_textual_entailment
task1612_sick_textual_entailment
task970_sherliic_textual_entailment
task890_gwsd_textual_entailment
task464_pasinlu_textual_entailment
task1516_imppres_textual_entailment
task642_e_snli_textual_entailment

Cause
Effect
Classification

Exact Match task1178_xcopa_cause_effect_classification
task391_cod3s_cause_effect_classification
task939_indicnlp_cause_effect_classification
task392_cod3s_cause_effect_classification
task938_indicnlp_cause_effect_classification
task1168_xcopa_cause_effect_classification
task828_copa_cause_effect_classification
task1628_copa_hr_cause_effect_classification
task943_indicnlp_cause_effect_classification
task1182_xcopa_cause_effect_classification
task1171_xcopa_cause_effect_classification
task968_xcopa_cause_effect_classification
task942_indicnlp_cause_effect_classification
task1181_xcopa_cause_effect_classification
task1172_xcopa_cause_effect_classification
task1393_copa_cause_effect_classification
task1174_xcopa_cause_effect_classification
task1627_copa_hr_cause_effect_classification
task1177_xcopa_cause_effect_classification

task1184_xcopa_cause_effect_classification
task1185_xcopa_cause_effect_classification
task1176_xcopa_cause_effect_classification
task614_glucose_cause_effect_classification
task1629_copa_hr_cause_effect_classification
task1175_xcopa_cause_effect_classification
task827_copa_cause_effect_classification
task1173_xcopa_cause_effect_classification
task1180_xcopa_cause_effect_classification
task1170_xcopa_cause_effect_classification
task1183_xcopa_cause_effect_classification
task969_xcopa_cause_effect_classification
task941_indicnlp_cause_effect_classification
task1626_copa_hr_cause_effect_classification
task940_indicnlp_cause_effect_classification
task393_cod3s_cause_effect_classification
task1169_xcopa_cause_effect_classification
task1179_xcopa_cause_effect_classification

Coreference
Resolution

Exact Match task1391_winogrande_coreference_resolution
task1664_wino_bias_coreference_resolution
task304_numeric_fused_head_coreference_resolution
task892_gap_coreference_resolution
task891_gap_coreference_resolution
task330_gap_coreference_resolution
task401_numeric_fused_head_coreference_resolution

task033_winogrande_coreference_resolution
task133_winowhy_coreference_resolution
task329_gap_coreference_resolution
task249_enhanced_wsc_coreference_resolution
task648_winograd_wsc_coreference_resolution
task1390_wsc_fiexed_coreference_resolution
task893_gap_coreference_resolution

Dialogue
Act
Recognition

Exact Match task879_schema_guided_dstc8_dialogue_act_recognition
task362_spolin_dialogue_act_recognition
task1533_dailydialog_dialogue_act_recognition
task1534_dailydialog_dialogue_act_recognition

task880_schema_guided_dstc8_dialogue_act_recognition
task1531_dailydialog_dialogue_act_recognition
task1394_meta_woz_dialogue_act_recognition

Answerability
Classification

Exact Match task020_mctaco_answerability_classification
task050_multirc_answerability_classification
task1439_doqa_answerability_classification
task233_iirc_answerability_classification
task226_stack_overflow_answerability_classification
task396_persianqa_answerability_classification
task1640_adverserial_qa_answerability_classification

task232_iirc_answerability_classification
task1442_doqa_answerability_classification
task242_tweetqa_answerability_classification
task1624_disfl_qa_answerability_classification
task520_aquamuse_answerability_classification
task290_tellmewhy_answerability_classification
task349_squad2.0_answerability_classification

Word Analogy Exact Match task1155_bard_word_analogy task1152_bard_word_analogy
task1158_bard_word_analogy task1156_bard_word_analogy
task1157_bard_word_analogy

task1159_bard_word_analogy task1153_bard_word_analogy
task1154_bard_word_analogy

Overlap
Extraction

ROUGE-L task039_qasc_overlap_extraction task281_points_of_correspondence_overlap_extraction

Keyword
Tagging

ROUGE-L task613_liar_keyword_tagging
task645_wiki_auto_all_data_keyword_tagging
task620_ohsumed_keyword_tagging

task036_qasc_keyword_tagging
task623_ohsumed_keyword_tagging

Question
Rewriting

ROUGE-L task670_ambigqa_question_rewriting
task121_zest_question_rewriting
task1195_disfl_qa_question_rewriting
task442_com_qa_question_rewriting
task1345_qqp_question_rewriting
task035_winogrande_question_rewriting

task671_ambigqa_question_rewriting
task1562_zest_question_rewriting
task1622_disfl_qa_question_rewriting
task034_winogrande_question_rewriting
task402_grailqa_question_rewriting

Title
Generation

ROUGE-L task1356_xlsum_title_generation
task1540_peer_read_title_generation
task1659_billsum_title_generation
task569_recipe_nlg_title_generation
task1342_amazon_us_reviews_title_generation
task220_rocstories_title_generation
task1561_clickbait_news_bg_title_generation
task418_persent_title_generation
task1358_xlsum_title_generation task769_qed_title_generation

task219_rocstories_title_generation
task602_wikitext_title_generation
task1586_scifact_title_generation
task743_eurlex_title_generation
task500_scruples_title_generation
task619_ohsumed_title_generation
task510_reddit_tifu_dataset_title_generation
task288_gigaword_title_generation
task1161_coda_19_title_generation

Data to Text ROUGE-L task957_e2e_data_to_text task1631_open_pi_data_to_text
task1598_nyc_data_to_text task1728_web_nlg_data_to_text
task102_commongen_data_to_text

task677_ollie_data_to_text task1407_dart_data_to_text
task1409_dart_data_to_text task760_msr_sqa_data_to_text

Grammar Error
Correction

ROUGE-L task1557_jfleg_grammar_error_correction

Table 5: 12 Evaluation categories (§5.1), their evaluation metrics (Exact Matching or ROUGE-L, §5.1), and all the
tasks in each category.



Task Type Textual Entailment
Task ID task1344_rte_textual_entailment
Definition In this task, you’re given two sentences. Indicate if the first sentence clearly entails the second sentence (i.e., one

can conclude the 2nd sentence by reading the 1st one). Indicate your answer with “1” if the first sentence entails the
second sentence, otherwise answer with “0”.

Positive Ex-
ample

Input: Sentence 1: No Weapons of Mass Destruction Found in Iraq Yet. Sentence 2:Weapons of Mass Destruction
Found in Iraq.
Output: 0
Explanation: In our first statement we clearly say that Iraq does not have any weapon of mass destruction but the
second sentence says that weapon of mass destruction is found in Iraq which is a contradiction. Hence output will
be 0 for non entailment.

Negative Ex-
ample

Input: Sentence 1: Valero Energy Corp., on Monday, said it found "extensive" additional damage at its 250,000-
barrel-per-day Port Arthur refinery. Sentence 2: Valero Energy Corp. produces 250,000 barrels per day.
Output: 0
Explanation: The first statement mentions that there was damage found in the 250,000 barrel-per-day Port Aurthur
refinery. Which means that they produce 250,000 barrels a day. Hence the output should have been 1 for entailment.

Instance Input: Sentence 1: Like the United States, U.N. officials are also dismayed that Aristide killed a conference called
by Prime Minister Robert Malval in Port-au-Prince in hopes of bringing all the feuding parties together. Sentence 2:
Aristide had Prime Minister Robert Malval murdered in Port-au-Prince.
Valid Output: [“0”]

Table 6: An example task in the Textual Entailment category of our dataset, adopted from RTE (Dagan et al., 2005;
Bentivogli et al., 2008).

Task Type Cause Effect Classification
Task ID task828_copa_cause_effect_classification
Definition In this task your given two statements. You must judge whether the second sentence is the cause or effect of the first

one. Label the instances as “cause” or “effect” based on your judgment. The sentences are separated by a newline
character.

Positive Ex-
ample

Input: The women met for coffee. They wanted to catch up with each other.
Output: cause
Explanation: The women met for coffee because they wanted to catch up with each other.

Negative Ex-
ample

Input: My body cast a shadow over the grass. The sun was rising.
Output: effect
Explanation: The rising of the sun isn’t an effect of casting a shadow over the grass.

Instance Input: The woman tolerated her friend’s difficult behavior. The woman knew her friend was going through a hard
time.
Valid Output: [“cause”]

Table 7: An example task in the Cause Effect Classification category of our dataset, adopted from COPA (Roem-
mele et al., 2011).

Task Type Coreference Resolution
Task ID task1391_winogrande_coreference_resolution
Definition In this task, you are given a question containing a blank (_) and two options. You should pick the best option to

answer the question. Please answer with “A” or “B”.
Positive Ex-
ample

Input: Katrina gave Christine a stuffed animal for their birthday, but _ already had this one. (A) Katrina (B)
Christine
Output: B
Explanation: Since the blank is someone who received the gift and already had a stuffed animal, the answer must
be “Christine”.

Negative Ex-
ample

Input: Kevin had to use less sunscreen when at the beach tanning than Justin because _ had less sensitive skin. (A)
Kevin (B) Justin
Output: (A)
Explanation: Here, an additonal parentheses has been added to the answer. Note that, a valid answer must be “A”
or “B”.

Instance Input: Benjamin hated being in the sand and just watched Nelson make castle since _ hated to be messy. (A)
Benjamin (B) Nelson
Valid Output: [“A”]

Table 8: An example task in the Cause Effect Classification category of our dataset, adopted from Wino-
Grande (Sakaguchi et al., 2020).



Task Type Dialogue Act Recognition
Task ID task1394_meta_woz_dialogue_act_recognition
Definition In this task, you are given four sentences: a bot task sentence, a bot role sentence, a user task sentence

and a user role sentence. Your job is to classify given sentences into one of the 47 different domains. The
domains are: “UPDATE_CALENDAR”, “PRESENT_IDEAS”, “MOVIE_LISTINGS”, “AUTO_SORT”,
“GAME_RULES”, “CONTACT_MANAGER”, “BANK_BOT”, “MUSIC_SUGGESTER”, “CHECK_STATUS”,
“PET_ADVICE”, “HOW_TO_BASIC”, “NAME_SUGGESTER”, “QUOTE_OF_THE_DAY_BOT”, “GUI-
NESS_CHECK”, “INSURANCE”, “RESTAURANT_PICKER”, “MAKE_RESTAURANT_RESERVATIONS”,
“WEDDING_PLANNER”, “SKI_BOT”, “HOME_BOT”, “PLAY_TIMES”, “BUS_SCHEDULE_BOT”,
“WHAT_IS_IT”, “PHONE_PLAN_BOT”, “DECIDER_BOT”, “PHONE_SETTINGS”, “TIME_ZONE”,
“LIBRARY_REQUEST”, “UPDATE_CONTACT”, “CATALOGUE_BOT”, “PROMPT_GENERATOR”,
“SCAM_LOOKUP”, “SPORTS_INFO”, “POLICY_BOT”, “CITY_INFO”, “APARTMENT_FINDER”,
“EVENT_RESERVE”, “SHOPPING”, “EDIT_PLAYLIST”, “LOOK_UP_INFO”, “ORDER_PIZZA”,
“WEATHER_CHECK”, “APPOINTMENT_REMINDER”, “GEOGRAPHY”, “STORE_DETAILS”, “AGREE-
MENT_BOT”, “ALARM_SET”.

Positive Ex-
ample

Input: Bot’s task: Inform the user that the topping they are asking for is unavailable. Bot’s role: You are a bot
designed to help customers order pizza. User’s task: Ask if a certain pizza topping is available. User’s role: You are
interacting with a pizza restaurant bot.
Output: ORDER_PIZZA
Explanation: According to the descriptions of the four sentences, we know that the type of task is ORDER_PIZZA.

Negative Ex-
ample

Input: Bot’s task: Help the user with their pizza order. Bot’s role: You are a bot designed to help customers order
pizza. User’s task: Ask the bot for three different pizzas. User’s role: You are interacting with a pizza restaurant bot.
Output: UPDATE_CALENDAR
Explanation: According to the descriptions of the tasks and roles, we know that the type of task is ORDER_PIZZA,
but the output is UPDATE_CALENDAR, so it is incorrect.

Instance Input: Bot’s task: Tell the user when the movie is playing on Friday night. Bot’s role: You are a a bot designed to
provide movie listings. User’s task: Ask the bot for the movie times for a movie on Friday night. User’s role: You
are interacting with a bot designed to provide movie listings.
Valid Output: [“MOVIE_LISTINGS”]

Table 9: An example task in the Dialogue Act Recognition category of our dataset, adopted from MetaLWOz (Sha-
lyminov et al., 2020).

Task Type Answerability Classification
Task ID task1640_adverserial_qa_answerability_classification
Definition Given a paragraph from a wikipedia article about some topic, and a question related to the topic, determine whether

the question is answerable from the paragraph. If the question is answerable, answer “True”, otherwise, answer
“False”.

Positive Ex-
ample

Input: Another approach to brain function is to examine the consequences of damage to specific brain areas.
Even though it is protected by the skull and meninges, surrounded by cerebrospinal fluid, and isolated from the
bloodstream by the blood 2013 brain barrier, the delicate nature of the brain makes it vulnerable to numerous
diseases and several types of damage. In humans, the effects of strokes and other types of brain damage have been a
key source of information about brain function. Because there is no ability to experimentally control the nature of
the damage, however, this information is often difficult to interpret. In animal studies, most commonly involving
rats, it is possible to use electrodes or locally injected chemicals to produce precise patterns of damage and then
examine the consequences for behavior. Question: What is surrounded by cerebrospinal fluid?
Output: True
Explanation: The paragraph comes from the wikipedia page on the brain. The answer to the question is the brain
which can be found in the paragraph.

Negative Ex-
ample

Input: NASCAR (headquartered in Daytona Beach) begins all three of its major auto racing series in Florida at
Daytona International Speedway in February, featuring the Daytona 500, and ends all three Series in November at
Homestead-Miami Speedway. Daytona also has the Coke Zero 400 NASCAR race weekend around Independence
Day in July. The 24 Hours of Daytona is one of the world’s most prestigious endurance auto races. The Grand Prix
of St. Petersburg and Grand Prix of Miami have held IndyCar races as well. Question: What is the starting time of
NASCAR’s big events?
Output: False
Explanation: This paragraph comes from the wikipedia article on Florida. The answer to the given question is
February which can be found in the paragraph, however the output is given as False.

Instance Input: Another approach to brain function is to examine the consequences of damage to specific brain areas.
Even though it is protected by the skull and meninges, surrounded by cerebrospinal fluid, and isolated from the
bloodstream by the blood 2013 brain barrier, the delicate nature of the brain makes it vulnerable to numerous
diseases and several types of damage. In humans, the effects of strokes and other types of brain damage have been a
key source of information about brain function. Because there is no ability to experimentally control the nature of
the damage, however, this information is often difficult to interpret. In animal studies, most commonly involving
rats, it is possible to use electrodes or locally injected chemicals to produce precise patterns of damage and then
examine the consequences for behavior. Question: What are the benefts of the blood brain barrier?
Valid Output: [“True”]

Table 10: An example task in the Answerability Classification category of our dataset, adopted from Adversari-
alQA (Bartolo et al., 2020).



Task Type Word Analogy
Task ID task1156_bard_word_analogy
Definition Two analogies that relate actions to the tools used to perform the action is given in the form “A : B. C : ?”. “A : B”

relates action A to tool B. Your task is to replace the question mark (?) with the appropriate tool for the given action
C, following the “A : B” relation.

Positive Ex-
ample

Input: eat : fork. cook : ?
Output: pan
Explanation: The given analogy relates actions to the tools used to perform them. A fork can be used to eat. To
cook, a pan can be used.

Negative Ex-
ample

Input: dig : shovel. wash : ?
Output: sink
Explanation: The given analogy relates actions to the tools used to perform them. A knife can be used to cut. To
wash, a sink CANNOT be used.

Instance Input: cut : knife. wash : ?
Valid Output: [“soap”, “washcloth”, “detergent”, “rag”]

Table 11: An example task in the Word Analogy category of our dataset, adopted from BARD (Fulda et al., 2017).

Task Type Overlap Extraction
Task ID task281_points_of_correspondence_overlap_extraction
Definition You will be given three sentences. Read them, then identify a noun phrase (person, place, or thing) or event that is

shared between all three sentences. As the output, write the span of the text corresponding to that phrase in each
sentence. Keep the order of the sentences, that is, your answer should look like: 1: *a phrase from sentence 1* 2: *a
phrase from sentence 2* 3: *a phrase from sentence 3*

Positive Ex-
ample

Input: 1: Four employees of the store have been arrested , but its manager – herself a woman – was still at large
Saturday , said Goa police superintendent Kartik Kashyap . 2: If convicted , they could spend up to three years in
jail , Kashyap said . 3: The four store workers arrested could spend 3 years each in prison if convicted .
Output: 1: Four employees of the store 2: they 3: The four store workers
Explanation: All three mentioned parts refer to the same entity, the four employees. “of the store” in first sentence
must be included, since it is part of the same noun phrase describing the employees.

Negative Ex-
ample

Input: 1: But an Arizona official told CNN Bates never trained with the agency . 2: He didn’t come to Arizona , the
official from the Maricopa County Sheriff ’s Office said , and he certainly didn’t train with us . 3: Maricopa County
Sheriff ’s Office in Arizona says Robert Bates never trained with them .
Output: 1: the agency 3: Maricopa County Sheriff ’s Office in Arizona
Explanation: The two noun phrases given in this example are correct, but there’s no noun phrase from sentence 2.
You should include all three sentences in your response.

Instance Input: 1: The President is headed to Panama for a regional summit , and Julie Pace of The Associated Press reports
one of the big questions is whether he ’ll make history and have a face-to-face meeting with Cuban leader Raul
Castro . 2: And so what the White House is going to be weighing is whether this meeting would be a way to
generate more progress or whether it would be a premature reward for the Castros . 3: White House weighing
whether Obama should meet with Raul Castro .
Valid Output: [“1: Cuban leader Raul Castro 2: the Castros 3: Raul Castro”, “1: face-to-face meeting 2: this
meeting 3: meet”]

Table 12: An example task in the Overlap Extraction category of our dataset, adopted from PointsOfCorrespon-
dence (Lebanoff et al., 2020).



Task Type Keyword Tagging
Task ID task620_ohsumed_keyword_tagging
Definition Given an abstract, generate a keyword (a noun phrase) that best describes the focus or contribution of the paper.

Such keywords can be directly from the given abstract or outside it.
Positive Ex-
ample

Input: Abstract: Our results suggest that ethylene oxide retention after sterilization is increased in cuprammonium
cellulose plate dialyzers containing potting compound. In contrast, cuprammonium cellulose plate dialyzers without
potting compound were characterized by a rapid disappearance of retained ethylene oxide after sterilization. Whether
these findings explain the low incidence of SARD with cuprammonium cellulose plate dialyzers that do not contain
potting material is a matter for continued study and experimentation.
Output: Sterilization
Explanation: This term is directly present in the abstract and it is one of the main topic in it. So can be chosen as
the medical subject heading.

Negative Ex-
ample

Input: Abstract: Our results suggest that ethylene oxide retention after sterilization is increased in cuprammonium
cellulose plate dialyzers containing potting compound. In contrast, cuprammonium cellulose plate dialyzers without
potting compound were characterized by a rapid disappearance of retained ethylene oxide after sterilization. Whether
these findings explain the low incidence of SARD with cuprammonium cellulose plate dialyzers that do not contain
potting material is a matter for continued study and experimentation.
Output: Plasma Volume
Explanation: This term is not directly present in the abstract and it is no way related to the abstract. So can not be
chosen as the medical subject heading. “Cellulose” can be become a mesh term

Instance Input: Abstract: There is controversy regarding the appropriate utilization of health care resources in the man-
agement of tricyclic antidepressant overdosage. Antidepressant overdose patients presenting to the emergency
department (ED) are routinely admitted to intensive care units, but only a small proportion develop cardiac arrhyth-
mias or other complications requiring such an environment. The authors reviewed the findings in 165 patients
presenting to an ED with antidepressant overdose. They found that major manifestations of toxicity on ED evaluation
(altered mental status, seizures, arrhythmias, an d conduction defects) were commonly associated with a complicated
hospital course. Patients with the isolated findings of sinus tachycardia or QTc prolongation had no complications.
No patient experienced a serious toxic event without major evidence of toxicity on ED evaluation and continued
evidence of toxicity during the hospital course. These data support the concept that proper ED evaluation can
identify a large body of patients with trivial ingestions who may not require hospital observation.
Valid Output: [“Antidepressive Agents, Tricyclic”, “Arrhythmia”, “California”, “Electrocardiography”, “Emergen-
cies”, “Emergency Service, Hospital”, “Female”, “Human”, “Length of Stay”, “Male”, “Prognosis”, “Retrospective
Studies”, “Tachycardia, Sinus”]

Table 13: An example task in the Keyword Tagging category of our dataset, adopted from OHSUMED (Hersh
et al., 1994).

Task Type Question Rewriting
Task ID task1622_disfl_qa_question_rewriting
Definition Convert a disfluent question to a proper question. A disfluent question is a question that has some interruptions in it

while framing. A proper question is the correct form of the question without any disfluency.
Positive Ex-
ample

Input: Why was uh where was the Rhine regulated with an upper canal?
Output: Where was the Rhine regulated with an upper canal?
Explanation: The above disfluent question is correctly converted to a proper question. The ’uh’ and the ’why’
before the correction should be removed to make it fluent.

Negative Ex-
ample

Input: When did Maududi exert the least impact no where did he exert?
Output: When did Maududi exert the least impact?
Explanation: The above disfluent question is not correctly converted to a proper question since the original meaning
in the disfluent question is where did Maudidi exert the least impact but the output asks when did Maudidi exert the
least impact.

Instance Input: What kind of, no hold up, what describes the proportionality of acceleration to force and mass?
Valid Output: [“What describes the proportionality of acceleration to force and mass?”]

Table 14: An example task in the Question Rewriting category of our dataset, adopted from Disfl-QA (Gupta et al.,
2021).



Task Type Title Generation
Task ID task418_persent_title_generation
Definition Given a document, generate a short title of the document. The title should convey the main idea/event/topic about

which the document is being written. Note that URLs in the text have been replaced with [Link].
Positive Ex-
ample

Input: In a letter posted on the White House web site Tuesday John Brennan assistant to President Barack Obama
for homeland security and counterterrorism said Schmidt will have regular access to the president and play a vital
role in the country’s security. Schmidt’s selection comes more than 10 months after Obama declared cyber security
a priority and ordered a broad administration review. A senior White House official said Obama was personally
involved in the selection process and chose Schmidt because of his unique background and skills. Schmidt will
have regular and direct access to the president for cyber security issues the official said. The official spoke on the
condition of anonymity to discuss the selection process. At the same time cyber experts and potential job candidates
have complained that the position lacks the budgetary and policy-making authority needed to be successful. Schmidt
will report to the National Security Council and closely support the National Economic Council on cyber issues.
Schmidt’s selection suggests that economic and business interests in the White House held more sway in the selection
process. Schmidt president and CEO of the Information Security Forum a nonprofit international consortium that
conducts research in information security has served as chief security officer for Microsoft and as cyber security
chief for online auction giant eBay. He was reportedly preferred by Lawrence Summers director of the economic
council. A good format for the titel can be the simple subject + object + verb.
Output: White House picks new cyber coordinator
Explanation: The title is relevant to the main topic of document, that is, the selection of Schmidt as the cybersecutiy
chief.

Negative Ex-
ample

Input: Lauren Cohan’s Walking Dead fate may be written in the Whiskey Cavalier. While the show hasn’t been
picked up yet Cohan hasn’t yet signed on for season 9 of Walking Dead and rumors have circulated for months
about her possible exit from the zombie show. Just two days ago show runner Scott Gimple told TV Line that he
is incredibly hopeful about working out a new deal with Cohan who has played Maggie since the second season.
“These things do happen in TV” he said. But we are talking.
Output: Scott Gimple signed Lauren Cohan for season 9
Explanation: Though the topic is relevant and have correct names from the document, this is incorrect fact, as it is
mentioned that Cohan hasn’t yet signed.

Instance Input: Days after at least 58 people were killed in a Las Vegas mass shooting , Hillary Clinton called for better gun
control . Clinton also had some words for President Trump , particularly of his handling of Hurricane Maria and
the devastation in Puerto Rico . Clinton , on her book tour for “What Happened ,” called her memoir “a story of
resilience .” Fallon also had female staff writers write thank you notes to Clinton . “Thank you , Miley , tonight
’s show writers and all of the women and young girls out there who are smart , strong and deserving of every
opportunity ,” Clinton said . As for election night , Clinton said she was disappointed both that she lost and that
President Trump won .
Valid Output: [“Hillary Clinton calls for gun control after Las Vegas shooting”]

Table 15: An example task in the Title Generation category of our dataset, adopted from PerSenT (Bastan et al.,
2020).

Task Type Data to Text
Task ID task957_e2e_data_to_text
Definition In this task, we ask you convert a data table of restaurant descriptions into fluent natural-sounding English sentences.

The input is a string of key-value pairs; the output should be a natural and grammatical English sentence containing
all the information from the input.

Positive Ex-
ample

Input: name[Aromi], eatType[restaurant], food[English], area[city centre]
Output: Aromi is an English restaurant in the city centre.
Explanation: The output sentence faithfully converts the data in the input into a natural-sounding sentence.

Negative Ex-
ample

Input: name[Blue Spice], eatType[coffee shop], priceRange[more than 0̆0a330], customer rating[5 out of 5],
area[riverside], familyFriendly[yes], near[Avalon]
Output: Blue Spice is a Colombian coffee shop located by the riverside, near Avalon in Boston. Its prices are over
0̆0a330. Its customer ratings are 5 out of 5.
Explanation: While the output contains most of the information from the input, it hallucinates by adding ungrounded
information such as “Colombian” and “Boston”.

Instance Input: name[The Mill], eatType[restaurant], area[riverside], near[The Rice Boat]
Valid Output: [“A restaurant called The Mill, can be found near the riverside next to The Rice Boat.”]

Table 16: An example task in the Data to Text category of our dataset, adopted from E2E (Novikova et al., 2017).
.



Task Type Grammar Error Correction
Task ID task1557_jfleg_grammar_error_correction
Definition In this task, you will be shown an incorrect English sentence. You need to generate a corrected form of the input

sentence.
Positive Ex-
ample

Input: The car’s wheel are loose.
Output: The car’s wheel is loose.
Explanation: The instance of are is replaced by the word is. This makes the sentence grammatically correct.

Negative Ex-
ample

Input: This way is the way to go.
Output: This way may be the way to go.
Explanation: The example does not correct the misuse of the word way. Instead, it should shorten the sentence to:
this is the way to go.

Instance Input: I think it ’s harder for successful preson to risk somethnig , thay coluld lost much more then others .
Valid Output: [“I think it ’s harder for a successful person to risk something becuase they could lose much more
than others .”]

Table 17: An example task in the Grammar Error Correction category of our dataset, adopted from JFLEG (Napoles
et al., 2017).

.
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Figure 11: Tk-INSTRUCT’s per-task performance improvement over the best of two heuristic baselines on the 119
evaluation tasks of the English track.
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Figure 12: Tk-INSTRUCT’s per-task performance improvement over the best of two heuristic baselines on the 35
evaluation tasks of the cross-lingual track.


