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Abstract

Even though deep neural models have achieved superhuman performance on many
popular benchmarks, they have failed to generalize to OOD or adversarial datasets.
Conventional approaches aimed at increasing robustness include developing in-
creasingly large models and augmentation with large scale datasets. However,
orthogonal to these trends, we hypothesize that a smaller, high quality dataset is
what we need. Our hypothesis is based on the fact that deep neural networks are
data driven models, and data is what leads/misleads models. In this work, we
propose an empirical study that examines how to select a subset of and/or create
high quality benchmark data, for a model to learn effectively. We seek to answer if
big datasets are truly needed to learn a task, and whether a smaller subset of high
quality data can replace big datasets. We plan to investigate both data pruning and
data creation paradigms to generate high quality datasets.

1 Introduction
Deep neural models such as EfficientNet-B7 [40], BERT [6] and RoBERTA [26] have achieved
super-human performance on many popular benchmarks in various domains such as Imagenet [37],
SNLI [3], and SQUAD [36]. However, their performance drops drastically on exposure to out of
distribution (OOD) and adversarial datasets [14, 8, 15, 13]. Lots of resources and time are being
invested in developing better models and architectures, such as transformer based approaches [45],
that dominate leaderboards. Since deep learning –a data driven approach– finds representation from
data, shouldn’t the focus be placed on creating ‘better’ datasets rather than developing increasingly
complex models?
Let us consider this through an analogy– a student (A) is asked to self-learn a concept by going
through a question bank (Q1), where there are 1000 solved questions. After self-learning, A is
tested using 100 unsolved questions present at the end of the Q1. While A achieves unprecedented
performance (85/100), beating other students who are explicitly taught the concept, when tested on
another 100 questions on the same topic from question bank (Q2), A fails on 50 questions. Similarly,
if A is interviewed by a teacher, A fails to answer 70 questions.
On analysis, we see that A has not truly learned the concept in Q1; instead, A solves questions by
relying on common question patterns seen in Q1, and associating them with the provided answers.
To fix this, suppose A is provided 1000 solved questions from Q2. On testing, we find that A now
correctly answers 90/100 unsolved questions from Q2, but only 55/100 from Q1, and 35/100 in
the interview. Now, we provide A with 100 question banks in a similar manner, and find that A’s
performance on both Q1 and Q2 is 70/100, and is 40/100 for the interview. To improve interview
performance, suppose that the interviewer prepares an additional question bank Qi, then if A self-
learns using both Q1 and Qi, then the scores for Q1, Q2, and the interview are 80, 45, and 80/100

Pre-registration workshop NeurIPS (2020), Vancouver, Canada.

ar
X

iv
:2

20
3.

06
40

4v
1 

 [
cs

.L
G

] 
 1

2 
M

ar
 2

02
2



respectively. However, if the interviewer changes, A again fails to correctly answer 70 questions.
Since the provision of additional question banks in different settings was not very effective, we
introduce a set of constraints in A’s self-learning strategy that disallows A from picking up on
questions patterns and answer associations. However, these constraints increase the time that A
spends on self-learning, and the number of question banks required (also, in turn the money spent if
question banks are rented on a time basis). We find that this improves A’s accuracy in answering
Q1, Q2, and interview questions to 95, 70, and 50/100 respectively.
Clearly, the above methods do not fully solve the problems in A’s self-learning strategy. This leads us
to question where the problem actually lies– is it in the learning strategy or in the learning material?
Intuitively, improving A’s learning strategy is conducive only if A is being provided high quality
learning material without any scope for identifying question patterns and answer associations; this
forces A to look beyond idiosyncrasies of the question banks that A is tested on.
How do we create high quality datasets for models to learn from? To define ‘quality’, we require
a quality index for machine learning, similar to those used in the domains of power [2], air [16],
food [10] and water [34]. Recently, based on a broad survey of AI literature, DQI [31] has been
proposed as a data quality index for NLP; here, relevant text properties that lead to either spurious or
inductive bias are identified and used to construct a formula that quantitatively evaluates benchmarks.
DQI comprises of 133 terms; in this work we aim to study how some of these terms both individually
and collectively can help models learn tasks in a few-shot setting. We aim to conduct two types of
experiments: (i) dataset pruning on existing benchmarks using different DQI terms (individually
and/or combined), and (ii) controlled crowdsourced creation of high quality datasets based on DQI.

2 Related Work:
Our progress in AI is evaluated by building and solving increasingly harder benchmarks. This in
turn leads to the development of new models and architectures. This trend requires heavy resource
investment, in terms of time, cost, hardware, etc. However, in this process, we must ask if we can
truly rely on our benchmarks. A series of recent works have shown that models exploit spurious bias –
unintended correlations between input and output [42, 4]– to solve tasks, instead of actually learning
the task from underlying data features [11, 39, 35, 44, 19, 41, 22, 28].
The mitigation of spurious bias has consequently become an increasingly prevalent track of research.
Some of the most common methods to achieve this are dataset pruning [38, 23, 24, 47], residual
learning [5, 12, 27], adversarial dataset creation [51, 33], and counterfactual data augmentation
[20, 9].
Each of these methods focuses on a specific part of the data-model loop: (i) accepting/ rejecting a
data sample created by a crowd-worker [33], (ii) retaining/ removing data with adversarial filtering
[38, 23, 24], (iii) augmenting only counter factual data [20, 9], and/or (iv) including data only if it can
fool the model [51, 33]; they are all commonly limited by binary evaluation, and can also introduce
new kinds of bias, overfitting to a specific model or task [25].
Binary evaluation in particular, is extremely restrictive as it only allows inclusion or deletion of data,
and further appends an overhead on human evaluators as there is uncertainty in class distinction.
Some other limitations include: (i) resource wastage in the initial creation of ‘biased’ data, (ii) dataset
creators are likely to repeat mistakes that lead to the making of biased data, as they do not learn
what constitutes biased data, (iii) important aspects of bias– such as its dependency on a train-test
split– are ignored, (iv) model training on each iteration increases time complexity, and (v) there is too
much effort required on the part of crowdworkers/authors/experts without providing a suitable and/or
illustrative feedback channel to educate data creators.
Using DQI to quantify benchmark quality can potentially address these issues; higher DQI implies
lower bias and higher generalization.

3 Method

We intend to utilize DQI in two ways: (i) dataset pruning, and (ii) dataset creation. We start by
addressing if (H1) we can learn a task effectively with smarter sample selection(pruning). However,
pruning overlooks resource wastage in creating biased data. So, we investigate if (H2) we can
leverage our pruning approach to assist crowd workers in constructing a smaller, but higher quality
dataset in the first place, such that pruning is no longer required. Answering H2 will justify the
utility of our question–Is high quality data all we need?– and change the deep learning trend of
creating big datasets.
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3.1 Dataset Pruning:
Do we really need big datasets? [29] Motivated by the process of human learning which relies on deep
background knowledge about the world– we don’t need access to hundreds of online materials to learn
a topic, rather we intentionally avoid many noisy, distracting, and irrelevant materials– we probe this
question. Considering that pre-training on large datasets has imparted linguistic knowledge to models
like BERT [6] and RoBERTA [26], we realize that models no longer need to learn from scratch;
instead, learning task-specific terminology (such as ‘Entailment’/‘Neutral’/‘Contradiction’labels for
Natural Language Inference) suffices, and might not necessitate the use of large datasets.
We therefore aim to find the high quality subset of benchmark data required to learn a task. Our
approach is inspired by human tendency to: (i) estimate the presence of relevant materials from the
total available material, (ii) remove redundant/irrelevant/known content from the initially selected
material, and (iii) use background knowledge of the task, task priority, and time available for learning
to heuristically sort and select relevant (i.e., high quality) content.
Algorithm: We mimic this material selection process in Algorithm 1. We use 2 modules for learning–
(i) AFLite [4, 38], and (ii) DQI. AFLite is a recent technique for adversarial filtering of dataset biases
using linear models, whereas DQI has a method to quantify quality of samples, with or without
annotation.
Formalization: Let M be the model, full dataset D and pruned dataset S, and for each sample s,
E(s): evaluation score,C(s): correct evaluation score, and P (s): predictability score.

Algorithm 1: High Quality Sample Selection
Result: Input: Dataset D and Models M :[Logistic Regression, SVM]; Hyper-Parameters b, m, n, t and

tau; Output: Pruned dataset S
1 a=0;
2 for a < 100 do
3 Select a% random samples from D and let acc be IID accuracy of model M at iteration x;
4 if acc(x) > acc(x− 1) then
5 a=a+b
6 else
7 a=a
8 end
9 end

10 D= a% of samples from D;
11 Get D’s embeddings by finetuning RoBERTA on 10% of D and discard this 10%;
12 S = D;
13 E(s) = 0 and C(s) = 0 for all s in S ;
14 while ||S|| > n do
15 forall i ∈ m do
16 Randomly select trainset of size t from S and let y =0;
17 while y < 2 do
18 Train M [y] on t and evaluate on rest of S i.e. V ;
19 forall s ∈ V do
20 E(s) = E(s) + 1;
21 if model prediction is correct then
22 C(s) = C(s) + 1
23 end
24 end
25 y = y + 1
26 end
27 end
28 forall s ∈ S do
29 P (s) = C(s)/E(s)
30 end
31 Shortlist instances where P (s) > tau ;
32 Sort shortlisted instances based on DQI values and delete k lowest DQI instances
33 end

3.2 Dataset creation:
While dataset pruning verifies the hypothesis that we don’t need big datasets to learn a task when using
pre-trained models, other problems associated with pruning (Section 2), particularly resource and
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Figure 1: Data creation workflow. Creators have the choice of manually revising, fixing, or discarding
samples. Validators may choose to provide feedback along with the decision to accept or reject
samples. Dotted lines indicate steps where user choices are available.

time wastage involved in creating biased data, remain unaddressed. We therefore plan to implement
a DQI-in-the-loop approach as proposed in a recent work [1], to recreate datasets and answer our
second question– Is a dataset created using DQI in a crowdsourcing setup equivalent to/better than
one obtained via pruning?
We propose a crowdsourcing workflow, as shown in Figure 1. This workflow will support data
creators; newly created samples are evaluated by DQI, and feedback is given to the user about
potential biases. Feedback can be shown to indicate if a particular aspect of the data created might
lead to spurious bias– encouraging sample modification to decrease the presence of artifacts and
increase generalization capability– using: (i) component-wise text feedback on specific sample
characteristics, (ii) color-swatches, with easy-to-interpret traffic signal color coding (red, yellow,
and green), and (iii) feedback from a data validator. We also intend to provide a recommender
system based on DQI to further assist creators in converting red signals to green. We will experiment
with these modules over varying granularities– i.e., feedback is provided at DQI component/sub-
component/term levels. After potentially iterative cycles of feedback and revision, the sample will
finally be submitted for bechmark inclusion.
Validators will evaluate submitted samples across different granularities in order to examine how
each individual sample contributes to the overall quality of the current dataset state. This will utilize
the first two feedback conditions presented to creators, along with visualizations, based on relevant
text characteristics considered in each DQI component. The validators will then communicate sample
decisions to the creators, with additional feedback (compulsory when the sample is rejected). This
will enable continuous feedback about creator performance during creation, and also support data
validators.
This framework aids in the creation of a new high quality dataset, and also enables opportunities for
various novel applications (such as dataset refurbishment), inspiring the next generation of datasets
and models.

4 Experimental Protocol
We perform an initial exploratory analysis and have promising results for dataset pruning. This is in
line with our three step approach to mimic human learning. We specifically address the third step–
imparting background knowledge and heuristics in learning– and test 1 DQI term.

4.1 Exploratory Analysis:
In our preliminary experiments [29] (Table 1), we utilize the first term of DQI C1 (component 1) to
prune SNLI [3] to ∼ 1− 2% of its original size (550K). When RoBERTA is trained with our pruned
dataset, it achieves near-equal performance on the SNLI dev set, as well as competitive zero-shot
generalization on: (i) NLI Diagnostics [46], (ii) Stress Tests [32], and (iii) Adversarial NLI [33]. This
indicates that we might not need big datasets to learn a task.
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Size IID
(Random)

5000 36.77
10000 77.45
15000 81.69

Size IID OOD ANLI OOD NLI Diagnostics OOD Stress Combined

R1 R2 R3 Knowl. LS Logic PAS Comp. Distraction Noise

550k 89.64 36.6 30.5 31.33 57.64 62.23 53.8 66.51 51.63 72.13 79.52

5000 87.47 32.6 31.8 28 50.35 61.14 48.37 67.45 35.29 65.72 73.97
10000 87.93 34.5 33 31.67 55.9 61.14 53.26 66.75 45.94 74.88 74.62
15000 88.95 37.2 28.3 29.17 56.6 56.79 54.62 65.8 45.94 70.66 77.71

Table 1: Left– Random Selection. Right– Pruned set results. Highlighted points: best performances.

4.2 Proposed Experiments:

We plan to further investigate high quality selection criterion by performing full scale pruning
experiments on the SNLI[3] and MNLI [48], and SQUAD 1.1 [36] datasets. MNLI and SNLI will
use the same OOD datasets as in Table 1. For SQUAD, we will use NewsQA[43], TriviaQA[17],
SearchQA[7], HotpotQA[50], and Natural Questions[21] as OOD datasets, in line with a recent
work [18]. We will also be recreating SNLI, MNLI, and SQUAD 1.1 using DQI-in-the-loop as
demonstrated in in our workflow (Figure 1).
Pruning Experiments: We intend to prune based on additional terms in DQI [31]. DQI is calculated
based on 7 components, 20 sub-components, and 133 terms. In order to short-list sub-components
that we can reasonably expect to be useful, we will first conduct pruning on SNLI based on all 7
components, individually. We will compare IID accuracy for various pruned sizes (Table 1), and
shortlist the two components that result in the highest IID accuracy of the pruned set. We will then
prune with the terms of selected components (based on initial SNLI pruning), to varying sizes (similar
to Table 1), to find out which DQI terms result in achieving higher IID accuracy, over all 3 datasets.
We also plan to perform an ablation study of the DQI, AFLite and Coarse Action (Algorithm 1 lines
2-9) modules, by removing them from the algorithm, on the shortlisted components. In all these
experiments our pruning happens purely based on IID test set accuracy. Zeroshot OOD evaluation is
just done to ensure that the pruned dataset does not contribute mainly spurious bias.
In RoBERTA, we plan to change the learning rate from 1e-6 to 1e-5, and vary b as 100, 1000, 2000,
and 5000. n is the target dataset size, and t is the training set size; we plan to vary both from 10 % of
S (the pruned dataset) to 75% of S, in 15% increments. m will be varied from 8 to 124 in increments
of either 16 or 32. Other hyperparameters will be fixed as per Hugging face transformers[49].
Expectations: In DQI, terms are synonymous with sub-components, except for C2 and C6, as
these two components address quality at word, POS tag (adjective, adverb, noun, and verb), bigram,
trigram, and sentence granularities; C6 further calculates terms label-wise, which we will ignore for
the purpose of pruning (-80 terms). If C2 and/or C6 are shortlisted based on component-wise pruning,
they will contribute 8 and 40 terms respectively. In other cases, components will contribute 1-5 terms.
We will prune all 3 datasets with the terms of selected components (based on initial SNLI pruning), to
varying sizes, similar to Table 1. In recent work, word overlap [11, 4] and semantic textual similarity
[30] have been dominant in producing spurious bias; we therefore expect to shortlist C3 and C5 in
our component-wise experiments.
Previous work has found that the amount of artifacts in datasets is in the order: SNLI>SQUAD>MNLI
[11, 4, 44, 41, 35, 31]. Accordingly, we expect the size of the equivalent pruned set (2% for SNLI)
to be in reverse. Additionally, considering the human motivation for Algorithm 1, we expect our
ablation experiments to affect performance in the order of DQI>AFLite>Coarse Action, with reverse
order for effect on pruning time.
Creation Experiments: We will use our creation workflow (Section 3.2) in crowdsourcing, to
recreate SNLI, MNLI, and SQUAD 1.1. For each respective dataset (without pruning), we will select
the smallest pruned dataset size that results in IID accuracy within +/-5% of the original IID accuracy
and create a similar size data using crowdsourcing setup. We will additionally perform ablation
studies with subsets of creators, across the different quality feedback methods. We will be using the
default hyperparameters mentioned in the DQI work [31].
Expectations: In the ablation studies, we expect number of samples, sample quality and IID/OOD
performance to be affected in the following order: all feedback modes>recommender system>text
feedback validator feedback>color-swatches. We expect the time involved to follow the reverse order.
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