
Front Contribution instead of Back Propagation

Swaroop Mishra
Arizona State University
srmishr1@asu.edu

Anjana Arunkumar
Arizona State University
aarunku5@asu.edu

Abstract

Deep Learning’s outstanding track record across several domains has stemmed from
the use of error backpropagation (BP). Several studies, however, have shown that it
is impossible to execute BP in a real brain. Also, BP still serves as an important
and unsolved bottleneck for memory usage and speed. We propose a simple, novel
algorithm, the Front-Contribution algorithm, as a compact alternative to BP. The
contributions of all weights with respect to the final layer weights are calculated
before training commences and all the contributions are appended to weights of
the final layer, i.e., the effective final layer weights are a non-linear function of
themselves. Our algorithm then essentially collapses the network, precluding the
necessity for weight updation of all weights not in the final layer. This reduction
in parameters results in lower memory usage and higher training speed. We show
that our algorithm produces the exact same output as BP, in contrast to several
recently proposed algorithms approximating BP. Our preliminary experiments
demonstrate the efficacy of the proposed algorithm. Our work provides a foundation
to effectively utilize these presently under-explored "front contributions", and
serves to inspire the next generation of training algorithms.

1 Introduction and Related Work

Backpropagation of error (BP) [28] has been the best algorithm to train neural networks, and has
driven deep learning to perform outstandingly across several domains [18]. However, it is not
consistent with our findings about the brain [5, 13]. In fact, it is not possible to execute BP in a
real brain [2]. BP also suffers from several other problems, such as a vanishing/exploding gradient.
Inspite of using careful initialization and architecture modifications [27, 9]– for example, using RELU
instead of sigmoid activations– quite effectively as workarounds, BP still is a key bottleneck for
memory usage and speed. This may indicate that BP is a suboptimal algorithm and will be replaced.

Several different algorithms have been proposed to improve BP. However, those algorithms have
tried to approximate BP and have not been able to work beyond toy datasets [2]; thus they cannot
be applied in a real world setting. We survey three categories of BP literature– (i) better hardware
implementation of BP [15, 16, 31, 11, 32, 25], (ii) workarounds to approximate BP [33, 7, 10], and
(iii) biologically inspired algorithms. Biologically inspired algorithms can further be segregated into
four types: (i) Inspired from biological observations [29, 7, 26, 17], these works try to approximate
BP with the intention resolve its biological implausibility, (ii) Propagation of an alternative to error
[19, 21], (iii) Leveraging local errors, the power of single layer networks, and layer wise pre-training
to approximate BP [24, 23, 3], (iv) Resolving the locking problem using decoupling [14, 6, 12, 1, 20]
and its variants [27, 8, 22, 4]. We were deeply motivated by (ii), (iii), and (iv) while coming up with
the idea of ‘front contributions’– specifically, propagating something other than error, the idea of a
single layer network, and decoupling, collectively inspire ‘front contributions’. The key distinction of
our front contribution is that, it produces exact same output as BP unlike other approaches that have
tried to approximate BP.

Beyond Backpropagation Workshop NeurIPS (2020), Vancouver, Canada.

ar
X

iv
:2

10
6.

05
56

9v
1 

 [
cs

.L
G

] 
 1

0 
Ju

n 
20

21



2 Method

We know that a set of linear layers can be collapsed to a single layer network; however, non-linear
activation functions have hitherto restricted the collapse of networks that they are applied in. Here,
we justify that every fully connected multi-layer network can be collapsed to a single layer network,
using the Front Contribution Algorithm, eliminating the requirement of backpropagation 1.

Formalization:

Let a neural network (NN) have n layers, such that each layer of its weights are represented as
Wi : iε[1, n], where W1 is applied to the input and Wn is on the branch connected to the output node.
Let the input of NN be X , intermediate layer outputs be vj : jε[1, n− 1], and final output be Y . We
can represent Y as:

Y = f(X,W1,W2.....Wn) (1)

Here, each of the weights are randomly initialized, and then updated using conventional back
propagation. Using the chain rule, we have:

∆W1 = f(W2,W3...Wn) (2)
∆W2 = f(W3,W4...Wn) (3)

From equation 6, we see that the input X is multiplied with the weights, and then transformed by
activations at various layers to produce the output Y . In other words, we can say that weight layers
W1...Wn indirectly contribute towards deciding what Y will be for a given X , in a hierarchical se-
quence starting fromW1 tillWn. The definition of ‘contribution’ varies depending on the application–
for example, in the case of language models like BERT, contribution refers to attention[30].

Now, from equations 7,8 we see that in the training process, for the ith layer, ∆ W is a function of all
the Wi layers, from the (i + 1)th layer up till the nth layer. From equation 7, we see that ∆ W1 is
a function of W2...Wn, but does not further depend on W1, i.e., the value of W1 at any iteration of
training depends on the initial value of W1– a random static value– and weights W2...Wn. So, we
can say that W1 is not part of the system basis– the set of vectors that can be used to represent any
system state, such as the use of x, y, z bases to represent any state of a 3D system– as W2...Wn can
represent the output value at any iteration. So, vector W1 is not actually a necessary variable.

For example, by defining a 3D system in terms of x, y, z, x + y + z, we utilize an unnecessary
variable, x+ y + z. As W1 is not an independent weight layer, we are therefore wasting GPU space
by using it. However, if the weight layer W1 is ignored, will the system still function as desired?
The value of v1 depends on weights in W1, so if W1 weights are not updated, v2 will retain its
old, incorrect value, consequently affecting Y even if all other weights are updated correctly, as the
network is connected as a hierarchy.

How do we compensate the non-updation of weights in W1? Let a compensation weight p be added
to weights in W2 such that Y remains the same, i.e., p compensates for the change in v2 that normally
happens with the updation of W1. Here, p must be a non-linear function of weights in W2, as it
compensates for an update that depends onW2...Wn. p can be derived by equating the v2 value found
post updation of W1 in conventional backpropgation, and the v2 value calculated without updating
W1 and replacing weights in W2 as W2 + p.

3 Finding an Expression for p:

Given a 2 layer neural network as shown in Figure 2, where inputs are x1, x2, and a single output Y is
produced, if w1, w2, w3, w4εW1 are not updated, then non-linear ‘compensation weights’ of p, q must
be added tow5, w6εW2 respectively in order to preserve Y output updation. Here, we consider outputs
at intermediate layer nodes after RELU activation to be v1, v2 (for example, s1 = w1x1 + w2x2;
v1 = RELU(s1)).

1See Supplementary Material: Analogy for illustrative explanation of backpropagation and front contribution

2



Figure 1: Neural network structure for (a) Backpropagation, (b) Forward Contribution. Here, layer
W1 contains weights w1, w2, w3, w4 and W2 contains weights w5, w6.

To derive values2 of p, q, consider that for the initial updation, we can say that:

Ybackpropgation = Ycontributionfactor =⇒ v1.w5 + v2.w6 = vc1.(w5 + p) + vc2.(w6 + q) (4)

where vc1 and vc2 are the constants– their values don’t change, as w1,w2,w3,w4 don’t get updated.

During updation between the 0th and 1st iterations, dv1’ can have 3 possible values based on active
and dead RELU before and after updation.

Consider a single input scheme, i.e., [x1,x2], such that additional compensation to w5 at each
iteration is:

dE

dw′5
= p

Using the chain rule, we can generalize this to calculate the total compensation weight P that must be
added at the nth iteration. Here, p and P compensate for weights w1, w2. Similarly, q and Q can be
defined to compensate for weights w3, w4. Let w5 + p be r5 and w6 + q be r6. r may be interpreted
as a transformation on W2 that takes care of the contribution factor from W1. Hence, the general
equation for updation after ‘n’ iterations is:

r5n = w5n +
w3

5n(x21 + x22)

3(v1c +
∑n

1
dE
dY n

w5n(x21 + x22)2)
(An−1 > 0 && An > 0)

= w5n +
w2

5n

2η dEdY n(v1c +
∑n

1
dE
dY n

w5n(x21 + x22))
(An−1 > 0 && An < 0)

where An = (w1c +
∑n

1
dE
dY n

w5nx1)x1 + (w2c +
∑n

1
dE
dY n

w5nx2)x2

r6n = w6n +
w3

6n(x21 + x22)

3(v2c +
∑n

1
dE
dY n

w6n(x21 + x22)2)
(Bn−1 > 0 && Bn > 0)

= w6n +
w2

6n

2η dEdY n(v2c +
∑n

1
dE
dY n

w6n(x21 + x22))
(Bn−1 > 0 && Bn < 0)

where Bn = (w3c +
∑n

1
dE
dY n

w6nx1)x1 + (w4c +
∑n

1
dE
dY n

w6nx2)x2

2Refer to Supplementary Material for the full derivation

3



Here subscript n represents value at the nth iteration, and subscript c represents the constant value,
i.e., the initial value which does not change across iterations.

We find that for multiple inputs, the entire input sequence must be stored to calculate the P and Q
values. Therefore, in the cases of updating either (i) w5, w6 by adding compensatory weights p, q, or
(ii) updating the compensatory weights p, q for a fixed w5, w6, we use a single input to run a basic
exploratory analysis experiment3.

To handle multiple inputs, we update s1, s2 as follows:

Initially: s1 = w1x1 + w2x2, s2 = w3x1 + w4x2, S1 = w1x1 − w2x2, S2 = w3x1 − w4x2

Updated as: s1@′ =
s′1 + S′1

2
x1

@ +
s′1 − S′1

2
x2

@, s2
@′ =

s′2 + S′2
2

x1
@ +

s′2 − S′2
2

x2
@

S1
@′ =

s′1 + S′1
2

x1
@ − s′1 − S′1

2
x2

@, S2
@′ =

s′2 + S′2
2

x1
@ − s′2 − S′2

2
x2

@ (5)

Above, we have shown that in the context of 6, for weight layer W2, (W2 + p) can contribute (attend
for text) equivalent to updated W1, and W2. p is the contribution/weight attention factor of W1 to
W2, i.e., the amount by which W1 contributes/attends to W2. In this case, W2 weights are now
non-linear, and we find that W2 weights can take the form W2 + W 3

2 . By introducing non-linear
weights, we can therefore reduce the total number of weights by 1 set (i.e., the number of weights
corresponding to a particular layer). By showing that NN of n layers can be collapsed to n-1 layers,
we can further use the method of induction to theoretically prove that NN can be collapsed from
(n− 1)− > (n− 2)− > ...− > 1 layer, such that the final network has just non-linear weights for
layer Wn.

This method of Wn calculation is the Front Contribution Algorithm, as instead of propagating error
backwards, the network propagates contribution forward to collapse the network.

4 Conclusion:

We proposed a simple, novel algorithm, the Front-Contribution algorithm, as a compact alternative to
BP. Our algorithm has several advantages:

(i) Front Contribution is a one-time calculation, i.e., given a NN structure, with number of layers,
activations, etc., the algorithm will output the non-linear weights of a corresponding collapsed
network. While the expression for Wn weights might be complex, the algorithm’s time complexity
remains O(1).
(ii) As the number of weights in a collapsed network is much lesser than in the original network, GPU
space usage will be drastically improved. Deep Learning has significantly benefited from parallel
computing, so by substantially improving parallel computing performance, we can potentially create
deeper networks.
(iii) Due to the absence of back-propagation, we expect network training time to also be drastically
reduced.
(iv) The post-training non-linear weights (represented in terms of their layers, Wi)– consider Wn =
Wn + k1W

3
n + k2W

5
n + ...– can potentially represent the features that the network has learned. Later

terms in the preceding expression should represent simpler features (like edges), while initial terms
should represent more complex features. However, Wn will give us an idea of the aggregate features
that are important for NN. We define aggregate features as the final set of features that NN cares
about, after attending to various features in a hierarchical manner.
(v) The modified network can always be expanded to a conventional network depending on our
requirements– for example, we might want to see activations of attention neurons, and can therefore
re-expand the network up till those neurons, without having to expand it fully.
(vi) This derivation can be modified and extended to other types of networks, such as CNNs, RNNs
and transformers.

3Refer to Supplementary Materials: Experiments

4



References
[1] P. Baldi, P. Sadowski, and Z. Lu. Learning in the machine: Random backpropagation and the

learning channel. arXiv preprint arXiv:1612.02734, 2016.

[2] S. Bartunov, A. Santoro, B. Richards, L. Marris, G. E. Hinton, and T. Lillicrap. Assessing the
scalability of biologically-motivated deep learning algorithms and architectures. In Advances in
Neural Information Processing Systems, pages 9368–9378, 2018.

[3] E. Belilovsky, M. Eickenberg, and E. Oyallon. Greedy layerwise learning can scale to imagenet.
arXiv preprint arXiv:1812.11446, 2018.

[4] A. Choromanska, B. Cowen, S. Kumaravel, R. Luss, M. Rigotti, I. Rish, B. Kingsbury, P. Di-
Achille, V. Gurev, R. Tejwani, et al. Beyond backprop: Online alternating minimization with
auxiliary variables. arXiv preprint arXiv:1806.09077, 2018.

[5] F. Crick. The recent excitement about neural networks. Nature, 337(6203):129–132, 1989.

[6] W. M. Czarnecki, G. Swirszcz, M. Jaderberg, S. Osindero, O. Vinyals, and K. Kavukcuoglu.
Understanding synthetic gradients and decoupled neural interfaces. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 904–912. JMLR. org, 2017.

[7] M. Ernoult, J. Grollier, D. Querlioz, Y. Bengio, and B. Scellier. Updates of equilibrium prop
match gradients of backprop through time in an rnn with static input. In Advances in Neural
Information Processing Systems, pages 7079–7089, 2019.

[8] S. Flennerhag, H. Yin, J. Keane, and M. Elliot. Breaking the activation function bottleneck
through adaptive parameterization. In Advances in Neural Information Processing Systems,
pages 7739–7750, 2018.

[9] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence
and statistics, pages 249–256, 2010.

[10] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse. The reversible residual network: Back-
propagation without storing activations. In Advances in neural information processing systems,
pages 2214–2224, 2017.

[11] A. Gruslys, R. Munos, I. Danihelka, M. Lanctot, and A. Graves. Memory-efficient backpropa-
gation through time. In Advances in Neural Information Processing Systems, pages 4125–4133,
2016.

[12] Z. Huo, B. Gu, Q. Yang, and H. Huang. Decoupled parallel backpropagation with convergence
guarantee. arXiv preprint arXiv:1804.10574, 2018.

[13] E. M. Izhikevich and G. M. Edelman. Large-scale model of mammalian thalamocortical systems.
Proceedings of the national academy of sciences, 105(9):3593–3598, 2008.

[14] M. Jaderberg, W. M. Czarnecki, S. Osindero, O. Vinyals, A. Graves, D. Silver, and
K. Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70, pages 1627–1635.
JMLR. org, 2017.

[15] R. Kumar, M. Purohit, Z. Svitkina, E. Vee, and J. Wang. Efficient rematerialization for deep
networks. In Advances in Neural Information Processing Systems, pages 15146–15155, 2019.

[16] M. Kusumoto, T. Inoue, G. Watanabe, T. Akiba, and M. Koyama. A graph theoretic framework
of recomputation algorithms for memory-efficient backpropagation. In Advances in Neural
Information Processing Systems, pages 1161–1170, 2019.

[17] B. J. Lansdell, P. Prakash, and K. P. Kording. Learning to solve the credit assignment problem.
arXiv preprint arXiv:1906.00889, 2019.

[18] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444, 2015.

5



[19] D.-H. Lee, S. Zhang, A. Fischer, and Y. Bengio. Difference target propagation. In Joint
european conference on machine learning and knowledge discovery in databases, pages 498–
515. Springer, 2015.

[20] W.-D. K. Ma, J. Lewis, and W. B. Kleijn. The hsic bottleneck: Deep learning without back-
propagation. arXiv preprint arXiv:1908.01580, 2019.

[21] N. Manchev and M. Spratling. Target propagation in recurrent neural networks. Journal of
Machine Learning Research, 21(7):1–33, 2020.

[22] T. Miyato, D. Okanohara, S.-i. Maeda, and M. Koyama. Synthetic gradient methods with virtual
forward-backward networks. 2017.

[23] H. Mostafa, V. Ramesh, and G. Cauwenberghs. Deep supervised learning using local errors.
Frontiers in neuroscience, 12:608, 2018.

[24] A. Nøkland and L. H. Eidnes. Training neural networks with local error signals. arXiv preprint
arXiv:1901.06656, 2019.

[25] A. Ororbia, A. Mali, D. Kifer, and C. L. Giles. Reducing the computational burden of deep
learning with recursive local representation alignment. arXiv preprint arXiv:2002.03911, 2020.

[26] A. G. Ororbia and A. Mali. Biologically motivated algorithms for propagating local target
representations. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 4651–4658, 2019.

[27] A. G. Ororbia, A. Mali, D. Kifer, and C. L. Giles. Conducting credit assignment by aligning
local representations. arXiv preprint arXiv:1803.01834, 2018.

[28] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error
propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science,
1985.

[29] J. Sacramento, R. P. Costa, Y. Bengio, and W. Senn. Dendritic cortical microcircuits approximate
the backpropagation algorithm. In Advances in Neural Information Processing Systems, pages
8721–8732, 2018.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, and I. Polo-
sukhin. Attention is all you need. ArXiv, abs/1706.03762, 2017.

[31] F. Wang, J. Decker, X. Wu, G. Essertel, and T. Rompf. Backpropagation with continuation
callbacks: Foundations for efficient and expressive differentiable programming.

[32] X. Xu, S. Zu, Y. Zhang, H. Zhou, and W. Feng. Backprop-q: Generalized backpropagation for
stochastic computation graphs. arXiv preprint arXiv:1807.09511, 2018.

[33] W. Zhang and P. Li. Spike-train level backpropagation for training deep recurrent spiking neural
networks. In Advances in Neural Information Processing Systems, pages 7800–7811, 2019.

5 Supplemental Material

We know that a set of linear layers can be collapsed to a single layer network; however, non-linear
activation functions have hitherto restricted the collapse of networks that they are applied in. Here,
we justify that every fully connected multi-layer network can be collapsed to a single layer network,
using the Front Contribution Algorithm, eliminating the requirement of backpropagation.

Analogy:

Consider an assembly line, where 10 people (P1 − P10) work sequentially to produce a toy car from
plastic. P1 cuts raw plastic (input) into different sizes, and gives it to P2, P2 smooths the plastic
and gives it to P3 (intermediate output), and so on until P10 produces the toy car (final output).
Initially, all the people do the task with no prior knowledge, so they perform random actions, aimed
at producing the final output (car). P10 sees the output produced, compares it to the desired toy car,

6



and rectifies his actions based on the input he receives from P9, to make the output closer and closer
to the toy car. P9, P8, etc. do the same– they look at the original error that they receive, find out
how much they contribute to the error, and then try to rectify their actions by small amounts (not
knowing exactly how much to rectify) to produce a perfect toy car. Therefore, every individual finds
their respective individual actions to be performed and collectively produce a toy car. They can use
this approach to build many other things, such as houses, fountains, etc., until they succeed as often
as possible. Is this however an efficient method of learning to build anything?

Consider a person, P11, who observes that P2 is merely doing a fine-tuned version of P1’s work by
getting plastic to a desired physical state, and can therefore reliably do both P1’s and their own work
as they both are new to building. If P1 is eliminated, and P2 is asked to both cut and smooth plastic,
by hiring one less person and reducing cost of transfer between P1 and P2, the budget allows for
extra training time for P2. P2 also doesn’t need to necessarily take more time to complete their work,
if given a tool that both cuts and smooths the cut edges of plastic simultaneously– i.e., the output
from P2 becomes the sum of rectified effort from P1 and P2. This is a one time cost, and P11 can
develop the required tool by finding the ‘contribution’ of P1’s actions to P2, i.e., how much P1’s
work attends to P2. Similarly, by observing the contributions of workers down the assembly line,
P11 is able to eliminate all but the last worker, and provide him with a single tool that can be used to
perform all the work. This results in a drastic decrease in budget and increase in building speed. It
also allows more time for process and output analysis, to understand how different steps and features
contribute towards a specific task and overall output– the process becomes more transparent, akin to
process explainability.

This can be extended towards other concepts such as center of mass in physics as well. We aim
to calculate a single-layer network with non-linear weights (calculated with Forward Contribution)
whose performance is tantamount to a conventional multi-layer network that uses backpropagation.
This is not an approximation (mimic) network, but an equivalent network to BP.

Formalization:

Let a neural network (NN) have n layers, such that each layer of its weights are represented as
Wi : iε[1, n], where W1 is applied to the input and Wn is on the branch connected to the output node.
Let the input of NN be X , intermediate layer outputs be vj : jε[1, n− 1], and final output be Y . We
can represent Y as:

Y = f(X,W1,W2.....Wn) (6)

Here, each of the weights are randomly initialized, and then updated using conventional back
propagation. Using the chain rule, we have:

∆W1 = f(W2,W3...Wn) (7)
∆W2 = f(W3,W4...Wn) (8)

From equation 6, we see that the input X is multiplied with the weights, and then transformed by
activations at various layers to produce the output Y . In other words, we can say that weight layers
W1...Wn indirectly contribute towards deciding what Y will be for a given X , in a hierarchical se-
quence starting fromW1 tillWn. The definition of ‘contribution’ varies depending on the application–
for example, in the case of language models like BERT, contribution refers to attention.

Now, from equations 7,8 we see that in the training process, for the ith layer, ∆ W is a function of all
the Wi layers, from the (i + 1)th layer up till the nth layer. From equation 7, we see that ∆ W1 is
a function of W2...Wn, but does not further depend on W1, i.e., the value of W1 at any iteration of
training depends on the initial value of W1– a random static value– and weights W2...Wn. So, we
can say that W1 is not part of the system basis– the set of vectors that can be used to represent any
system state, such as the use of x, y, z bases to represent any state of a 3D system– as W2...Wn can
represent the output value at any iteration. So, vector W1 is not actually a necessary variable.

Since W1 is not part of the basis, it is actually not a necessary variable; for example, by defining a 3D
system in terms of x, y, z, x+ y + z, we utilize an unnecessary variable, x+ y + z. As W1 is not an
independent weight layer, we are therefore wasting GPU space by using it. However, if the weight
layer W1 is ignored, will the system still function as desired? The value of v1 depends on weights in
W1, so if W1 weights are not updated, v2 will retain its old, incorrect value, consequently affecting
Y even if all other weights are updated correctly, as the network is connected as a hierarchy.

7



Figure 2: Neural network structure for (a) Backpropagation, (b) Forward Contribution. Here, layer
W1 contains weights w1, w2, w3, w4 and W2 contains weights w5, w6.

How do we compensate the non-updation of weights in W1? Let a compensation weight p be added
to weights in W2 such that Y remains the same, i.e., p compensates for the change in v2 that normally
happens with the updation of W1. Here, p must be a non-linear function of weights in W2, as it
compensates for an update that depends onW2...Wn. p can be derived by equating the v2 value found
post updation of W1 in conventional backpropgation, and the v2 value calculated without updating
W1 and replacing weights in W2 as W2 + p.

6 Finding an Expression for p

Let X be the input vector: [[x1,x2], [x1@,x2@], [x1*,x2*], [x1#, x2#]]. Let Yg be the vector of gold
labels: [yg , yg@, yg*, yg#]. Let w1, w2, w3, w4 be the weights of the first layer (W1). Let w5, w6 be
the weights of the last layer (W2). We define the state of the intermediate nodes v1 and v2 for a given
input as:

s1 = w1 · x1 + w2 · x2, s2 = w3 · x1 + w4 · x2 (9)

The activation function for intermediate nodes is RELU, i.e.:

v1 = RELU(s1), v2 = RELU(s2) (10)

where

RELU(s) =

{
s if s > 0

0 if s < 0

Let η be the learning rate and Y be the output vector: [y, y@, y*, y#], where

y = w5 · v1 + w6 · v2 (11)

Let the error E be defined as:

E =
1

2
(y − yg)2, i.e.,

dE

dY
= y − yg (12)

The following repeats successively for each epoch, for a single given input:

w′5 = w5 − η
dE

dY
v1, w

′
6 = w6 − η

dE

dY
v2 (13)

8



dE
dw1

can have 2 possible values based on whether the RELU is dead or not, as can dE
dw2

, dEdw3
and dE

dw4
:

dE

dw1
= 0 (or)

dE

dw1
=
dE

dY
.w5.x1(s1 > 0)

dE

dw2
= 0 (or)

dE

dw2
=
dE

dY
.w5.x2(s1 > 0)

dE

dw3
= 0 (or)

dE

dw3
=
dE

dY
.w6.x1(s2 > 0)

dE

dw4
= 0 (or)

dE

dw4
=
dE

dY
.w6.x2(s2 > 0)

Based on this, we update the weights of the first layer as:

w′1 = w1 − η
dE

dY
w′5x1(s1 > 0)(or)w′1 = w1(s1 < 0) (14)

w′2 = w2 − η
dE

dY
w′5x2(s1 > 0)(or)w′2 = w2(s1 < 0)

w′3 = w3 − η
dE

dY
w′6x1(s2 > 0)(or)w′3 = w3(s2 < 0)

w′4 = w4 − η
dE

dY
w′6x2(s2 > 0)(or)w′4 = w4(s2 < 0)

s′1 = w′1 · x1 + w′2 · x2, s′2 = w′3 · x1 + w′4 · x2, (15)

v′1 = RELU(s′1), v′2 = RELU(s′2), y = w′5 · v′1 + w′6 · v′2

where
dE

dY
= y − yg = (w5 · v1 + w6 · v2)− yg (16)

From equations 14, 15:

s′1 = (w1 − η
dE

dY
w′5x1)x1 + (w2 − η

dE

dY
w′5x2)x2 (17)

= w1 · x1 + w2 · x2 − η
dE

dY
w′5(x1

2 + x2
2)

= s1 − η
dE

dY
w′5(x1

2 + x2
2)

Parallely, s′2 = s2 − η
dE

dY
w′6(x1

2 + x2
2)

If the next input is [x1@,x2@] then for the next epoch, we have:

s′1
@ = (w1 − η

dE

dY
w′5x1)x1

@ + (w2 − η
dE

dY
w′5x2)x2

@ (18)

= w1 · x1@ + w2 · x2@ − η dE
dY

w′5(x1x1
@ + x2x2

@)

9



s′2
@ = (w3 − η

dE

dY
w′6x1)x1

@ + (w4 − η
dE

dY
w′6x2)x2

@

= w3 · x1@ + w4 · x2@ − η dE
dY

w′6(x1x1
@ + x2x2

@)

Using s1@=w1 ·x1@ + w2 ·x2@, s2@=w3 ·x1@ + w4 ·x2@, and equation 17, we can simplify equation
18 as:

s′1
@ = s1

@ +
s′1 − s1
x12 + x22 (x1x1

@ + x2x2
@) (19)

s′2
@ = s2

@ +
s′2 − s2
x12 + x22 (x1x1

@ + x2x2
@)

Let:

s1
* = w1 · x1* + w2 · x2*, s1

# = w1 · x1# + w2 · x2#

s2
* = w3 · x1* + w4 · x2*, s2

# = w3 · x1# + w4 · x2#

Using the above with equation 19, for the next 2 epochs with inputs [x1*,x2*] and [x1#,x2#], we get:

s′′1
* = s1

* +
s′1 − s1
x12 + x22 (x1x1

* + x2x2
*) +

s′′1
@ − s′1@

x1@2 + x2@2 (x1
@x1

* + x2
@x2

*) (20)

s′′′1
# = s1

# +
s′1 − s1
x12 + x22 (x1x1

# + x2x2
#) +

s′′1
@ − s′1@

x1@2 + x2@2 (x1
@x1

# + x2
@x2

#)+

s′′′1
* − s′′1 *

x1*2 + x2*2 (x1
*x1

# + x2
*x2

#)

s′′2
* = s2

* +
s′2 − s2
x12 + x22 (x1x1

* + x2x2
*) +

s′′2
@ − s′2@

x1@2 + x2@2 (x1
@x1

* + x2
@x2

*)

s′′′2
# = s2

# +
s′2 − s2
x12 + x22 (x1x1

# + x2x2
#) +

s′2
@′ − s′2@

x1@2 + x2@2 (x1
@x1

# + x2
@x2

#)+

s′′′2
* − s′′2 *

x1*2 + x2*2 (x1
*x1

# + x2
*x2

#)

If w1, w2, w3, w4 are not updated, then non-linear ‘compensation weights’ of p, q must be added to
w5, w6 respectively in order to preserve Y output updation. To derive values of p, q, consider that for
the initial updation, using equations 9, 10, 11, 13 we can say that:

Ybackpropgation = Ycontributionfactor =⇒ v1.w5 + v2.w6 = vc1.(w5 + p) + vc2.(w6 + q) (21)

where vc1 and vc2 are the constants– their values don’t change, as w1,w2,w3,w4 don’t get updated. So,
for the first updation, we get:

v′1.w
′
5 + v′2.w

′
6 = vc1.(w

′
5 + p) + vc2.(w

′
6 + q)

=⇒ (vc1 + dv′1).w′5 + (vc2 + dv′2).w′6 = vc1.(w
′
5 + p) + vc2.(w

′
6 + q)

where w′5, w
′
6 are updated as per equation 13. Now, compensating v1 and v2 separately, we have:

(vc1 + dv′1).w′5 = vc1.(w
′
5 + p) =⇒ dv′1.w

′
5 = vc1.p (22)

Similarly,

(vc2 + dv′2).w′6 = vc2.(w
′
6 + q) =⇒ dv′2.w

′
6 = vc2.q

10



During updation between the 0th and 1st iterations, dv1’ can have 3 possible values: (i) RELU is dead
at the 0th iteration and stays dead after the 1st update, (ii) RELU is active at the 0th iteration and stays
active after the 1st update, and (iii) RELU is dead at the 0th iteration and becomes active after the 1st

update:

dv′1 = 0 (23)

dv′1 = dw′1.x1 + dw′2.x2 ((s1 ≥ 0)&&(s′1 ≥ 0))

dv′1 = −v1 = −s1 ((s1 ≥ 0)&&(s′1 < 0))

where

s1 = w1.x1 + w2.x2

s′1 = s1(s1 < 0)

i.e.,

s′1 = (w′1.x1 + w′2.x2)(s1 ≥ 0) (24)

=⇒ s′1 = (w1 − η
dE

dw1
).x1 + (w2 − η

dE

dw2
).x2

=⇒ s′1 = (w1 − η
dE

dY
.w′5.x1(s1 ≥ 0)).x1 + (w2 − η

dE

dY
.w′5.x2(s1 ≥ 0)).x2

=⇒ s′1 = s1 − η
dE

dY
.w′5(x21 + x22)(s1 ≥ 0)

Using equation 24 in 23,

dv′1 = −η dE
dY

.w′5(x21 + x22)(((w1.x1 + w2.x2) ≥ 0)&& (25)

((w1 − η
dE

dY
.w′5.x1).x1 + (w2 − η

dE

dY
.w′5.x2).x2)) ≥ 0))

dv′1 = −(w1.x1 + w2.x2)(((w1.x1 + w2.x2) ≥ 0)&&

((w1 − η
dE

dY
.w′5.x1).x1 + (w2 − η

dE

dY
.w′5.x2).x2)) < 0))

Using equation 22 and 26, we get:

p = dv′1.w
′
5

vc1
(26)

=−η
dE
dY

.w′5(x21+x22)(((w1.x1+w2.x2)≥0)&&((w1−η dEdY .w
′
5.x1).x1+(w2−η dEdY .w

′
5.x2).x2))≥0)).w′5

vc1

=−η
dE
dY

.w′25 (x21+x22)(((w1.x1+w2.x2)≥0)&&((w1−η
dE
dY

.w′5.x1).x1+(w2−η
dE
dY

.w′5.x2).x2))≥0))

vc1

p = dv′1.w
′
5

vc1
(27)

=−(w1.x1+w2.x2)(((w1.x1+w2.x2)≥0)&&((w1−η
dE
dY

.w′5.x1).x1+(w2−η
dE
dY

.w′5.x2).x2))≥0)).w′5
vc1

=−v
c
1.(((w1.x1+w2.x2)≥0)&&((w1−η

dE
dY

.w′5.x1).x1+(w2−η
dE
dY

.w′5.x2).x2))≥0)).w′5
vc1

=−w′5.(((w1.x1+w2.x2)≥0)&&((w1−η dEdY .w
′
5.x1).x1+(w2−η dEdY .w

′
5.x2).x2))≥0))

The above represents the amount of weight p to be added for the given iteration. Consider only a
single input scheme, i.e., [x1,x2], such that additional compensation to w′5 at each iteration is:

11



dE

dw′5
= p

Then using the chain rule, we can generalize this to calculate the total compensation weight P that
must be added at the nth iteration as follows:

Additional − η dE
dY

.vc1.
dP

dw5
= p (28)

=⇒ dP

dw5
=

−p
η dEdY .v

c
1

=⇒ P =

∫
−p

η dEdY .v
c
1

.dw5

We can find P in terms of w5’ using equation 18, 20 as:

=
∫ η dE

dY
.w′25 (x21+x22)(((w1.x1+w2.x2)≥0)&&((w1−η

dE
dY

.w′5.x1).x1+(w2−η
dE
dY

.w′5.x2).x2))≥0))

vc1

η dE
dY

.vc1.v
c
1

.dw′5 (29)

=
∫ w′25 (x21+x22)(((w1.x1+w2.x2)≥0)&&((w1−η

dE
dY

.w′5.x1).x1+(w2−η
dE
dY

.w′5.x2).x2))≥0))

vc
2

1

.dw′5

=w′35 (x21+x22)(((w1.x1+w2.x2)≥0)&&((w1−η
dE
dY

.w′5.x1).x1+(w2−η
dE
dY

.w′5.x2).x2))≥0))

3vc
2

1

and using equation 19, 20 as:

=
∫ w′5(((w1.x1+w2.x2)≥0)&&((w1−η

dE
dY

.w′5.x1).x1+(w2−η
dE
dY

.w′5.x2).x2))≥0))

η dE
dY

.vc1

.dw′5 (30)

=w′25 (((w1.x1+w2.x2)≥0)&&((w1−η
dE
dY

.w′5.x1).x1+(w2−η
dE
dY

.w′5.x2).x2))≥0))

2η dE
dY

.vc1

Here, p and P compensate for weights w1, w2. Similarly, q and Q can be defined to compensate
for weights w3, w4. Let w5 + p be r5 and w6 + q be r6. r may be interpreted as a transformation
on wlayer2 that takes care of the contribution factor from wlayer1. Hence, the general equation for
updation after ‘n’ iterations is:

r5n = w5n +
w3

5n(x21 + x22)

3(v1c +
∑n

1
dE
dY n

w5n(x21 + x22)2)
(An−1 > 0 && An > 0)

= w5n +
w2

5n

2η dEdY n(v1c +
∑n

1
dE
dY n

w5n(x21 + x22))
(An−1 > 0 && An < 0)

where An = (w1c +
∑n

1
dE
dY n

w5nx1)x1 + (w2c +
∑n

1
dE
dY n

w5nx2)x2

r6n = w6n +
w3

6n(x21 + x22)

3(v2c +
∑n

1
dE
dY n

w6n(x21 + x22)2)
(Bn−1 > 0 && Bn > 0)

= w6n +
w2

6n

2η dEdY n(v2c +
∑n

1
dE
dY n

w6n(x21 + x22))
(Bn−1 > 0 && Bn < 0)

12



where Bn = (w3c +
∑n

1
dE
dY n

w6nx1)x1 + (w4c +
∑n

1
dE
dY n

w6nx2)x2

Here subscript n represents value at the nth iteration, and subscript c represents the constant value,
i.e., the initial value which does not change across iterations.

In the condition s1 ≥ 0 and s′1 ≥ 0, using equations 13, 21, 18, for inital input [x1,x2] we have:

p = −η dE
dy
w′5

2 (x1
2 + x2

2)

v1c , q = −η dE
dy
w′6

2 (x1
2 + x2

2)

v2c

y′ = (w′5 + p)v1
c + (w′6 + p)v2

c,
dE

dy

′
= y′ − yg

w′′5 = w′5 − η
dE

dy

′
v′1 = w′5 − η(v1

cw′5 + v1
cp+ v2

cw′6 + v2
cq − yg)(v1c − pv1c)

w′′6 = w′6 − η
dE

dy

′
v′1 = w′5 − η(v1

cw′5 + v1
cp+ v2

cw′6 + v2
cq − yg)(v2c − qv2c)

For next input [x1@,x2@] we have:

v1
@′w′5 = (w′5 + p+ p@)v1

@

=⇒ −η dE
dy
w′5

2(x1x1
@ + x2x2

@) = p@(w1x1
@ + w2x2

@) + p(w1x1
@ + w2x2

@)

p@ = p− η dE
dy
w′5

2 (x1x1
@ + x2x2

@)

v′1
@

Parallely, q@ = q − η dE
dy
w′6

2 (x1x1
@ + x2x2

@)

v′2
@ (31)

From the above, we see that for multiple inputs, the entire input sequence must be stored to calculate
the P and Q values. Therefore, in the cases of updating either (i) w5, w6 by adding compensatory
weights p, q, or (ii) updating the compensatory weights p, q for a fixed w5, w6, we only use one input.

To handle multiple inputs, we update s1, s2 as follows:

Initially:
s1 = w1x1 + w2x2, s2 = w3x1 + w4x2
S1 = w1x1 − w2x2, S2 = w3x1 − w4x2

Updated as:

s1
@′ =

s′1 + S′1
2

x1
@ +

s′1 − S′1
2

x2
@, s2

@′ =
s′2 + S′2

2
x1

@ +
s′2 − S′2

2
x2

@

S1
@′ =

s′1 + S′1
2

x1
@ − s′1 − S′1

2
x2

@, S2
@′ =

s′2 + S′2
2

x1
@ − s′2 − S′2

2
x2

@ (32)

Above, we have shown that in the context of 6, (W2 + p) (where W2 is the second weight layer
comprising of w5, w6) can contribute (attend for text) equivalent to updated W1, and W2. p is the
contribution/weight attention factor of W1 to W2, i.e., the amount by which W1 contributes/attends
to W2. In this case, W2 weights are now non-linear– based on equation 30, W2 weights can take the
form of W2 + W 3

2 . By introducing non-linear weights, we can therefore reduce the total number
of weights by 1 set (i.e., the number of weights corresponding to a particular layer). By showing
that NN of n layers can be collapsed to n-1 layers, we can further use the method of induction to
theoretically prove that NN can be collapsed from (n− 1)− > (n− 2)− > ...− > 1 layer, such that
the final network has just non-linear weights for layer Wn.

This method of Wn calculation is the Front Contribution Algorithm, as instead of propagating error
backwards, the network propagates contribution forward to collapse the network.

Experiments:

13



The results of the three techniques we use for Forward Contribution, over the implementation of the
XOR task are displayed in Figure 3.

The order of error is < 10−15, proving that Forward Contribution is a true equivalent of backpropaga-
tion.

Figure 3: Here in all 3 figures, x-axis represents the training iteration, and the y-axis represents
the error between output produced through backpropagation and the ouptut produced by forward
contribution. Top: On updation of weights w5, w6 as w5 + p, w6 + q. Middle: On updation of values
of p, q without updation of w5, w6. Bottom: Updation of states v1, v2 without weight updation.

Backpropagation vs. Front Contribution Illustrations: We illustrate the process flows of Back
Propagation and Front Contribution in Figure 4.

14



Figure 4: On the left hand side, from top->bottom are the steps for Back-Propagation; the top right
image has the final summary of Back-Propagation. The remaining images on the right show how
Front-Contribution functions (top->bottom).

15


	1 Introduction and Related Work
	2 Method
	3 Finding an Expression for p:
	4 Conclusion:
	5 Supplemental Material
	6 Finding an Expression for p

