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Figure 1: LINGO workflow: (1) Select a task to analyze based on the sentence embedding space of task instructions. (2) Next, compare
the linguistic characteristics of nearest neighbor task instructions to identify features that lead to instruction bias. (3) Modify or create task
instructions, and evaluate model performance on the updated task. (4) Tasks can be iteratively modified till bias is sufficiently reduced.

Abstract
Cross-task generalization is a significant outcome that defines mastery in natural language understanding. Humans show a
remarkable aptitude for this, and can solve many different types of tasks, given definitions in the form of textual instructions
and a small set of examples. Recent work with pre-trained language models mimics this learning style: users can define
and exemplify a task for the model to attempt as a series of natural language prompts or instructions. While prompting
approaches have led to higher cross-task generalization compared to traditional supervised learning, analyzing ‘bias’ in
the task instructions given to the model is a difficult problem, and has thus been relatively unexplored. For instance, are
we truly modeling a task, or are we modeling a user’s instructions? To help investigate this, we develop LINGO, a novel
visual analytics interface that supports an effective, task-driven workflow to (1) help identify bias in natural language task
instructions, (2) alter (or create) task instructions to reduce bias, and (3) evaluate pre-trained model performance on debiased
task instructions. To robustly evaluate LINGO, we conduct a user study with both novice and expert instruction creators, over
a dataset of 1,616 linguistic tasks and their natural language instructions, spanning 55 different languages. For both user
groups, LINGO promotes the creation of more difficult tasks for pre-trained models, that contain higher linguistic diversity and
lower instruction bias. We additionally discuss how the insights learned in developing and evaluating LINGO can aid in the
design of future dashboards that aim to minimize the effort involved in prompt creation across multiple domains.

CCS Concepts
• Human-centered computing → Visual analytics; Text input; • Computing methodologies → Natural language processing;

1. Introduction

Benchmark datasets play a key role in driving progress in Natural
Language Processing (NLP) [RGA23, WMA∗22]. Pre-trained lan-
guage models (PLMs) have achieved state-of-the- art performance

on many benchmark tasks [PNI∗18, BMR∗20] and have shown
promising generalization capabilities [KMK∗20, AGS∗21]. How-
ever, cross-task generalization, or generalization of a PML to un-
seen tasks, remains a comparatively hard challenge [MKBH21].
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In contrast, humans are adept at such generalization. For in-
stance, NLP benchmarks are commonly created through crowd-
sourcing, wherein crowdworkers create instances for a task, fol-
lowing instructions from dataset creators [EL20, SVN∗21]. Re-
cently, the NLP community has made great progress in building
models for generalization to unseen tasks via in-context instruc-
tions [BMR∗20, CND∗22]. These instructions comprise a natural
language prompt that defines and exemplifies a task for a PLM,
similar to crowdsourcing instructions. Figure 2 represents the or-
ganization of a natural language instruction (composed of a task
description and examples) for a text modification task, along with
task instances for model evaluation.

Figure 2: Schema used for representing natural language instruc-
tions. The task is created from the SNLI benchmark [BAPM15]

Unfortunately, prior work in crowdsourcing has shown that task
instructions provided by dataset creators often influence crowd-
workers to follow specific patterns during instance creation. This
leads to collection of biased data, which inflates model perfor-
mance [GGB19, PMGB22, HSG∗21]. This is particularly critical
in high-risk domains such as healthcare [MA21a], where incorrect
answers to a task can prove fatal. Therefore, despite the success of

instructions in PLMs, the NLP community is faced with the ques-
tion of: are we truly modeling a task or a user’s instructions? To
investigate this, we developed LINGO, an end-to-end visual analy-
sis and authoring tool for natural language instructions. LINGO is
designed to address real-world challenges faced in NLP benchmark
creation, by helping authors identify/compare instruction bias per-
taining to different types of tasks; LINGO also facilitates real-time
task instruction creation/modification and evaluation with PLMs,
as shown in Figure 1. To our knowledge, LINGO represents the
first visual analytics system that enables realtime feedback and
reconciliation opportunities to data creators for instruction bias.

In this paper, we describe the process of developing LINGO,
based on a pre-study with expert instructional prompt creators to
identify salient challenges involved in the identification and recon-
ciliation of instruction bias. We robustly evaluate LINGO via a real-
world usage scenario, and a user study with both novice and expert
instruction authors over a dataset of 1,616 linguistic tasks and their
natural language definitions, spanning 55 different languages. (We
note that, while LINGO is language-independent, linguistic knowl-
edge is required for users to analyze multi-lingual tasks.) The re-
sults indicate that LINGO promotes the creation of more difficult
tasks for pre-trained models, that are defined with higher linguistic
diversity and exhibit lower instruction bias. In following a design
study methodology, and based on the process of creating and evalu-
ating LINGO, feedback from our formative interviews and the user
study, we additionally discuss how tools like LINGO can benefit
the NLP and AI communities in using prompting to create less bi-
ased benchmark datasets and evaluate PLMs, by reducing the effort
involved in diverse prompt creation across multiple domains and
languages, and helping standardize the quantification and elimina-
tion of bias in text data.

2. Related Work

2.1. Learning from Instructions

The success of PLMs [BMR∗20, CND∗22] has powered the devel-
opment of various ‘prompting’ techniques [LYF∗23] in NLP. Typi-
cally, prompts are extremely short and may not include a complete
definition of complex tasks [SS21, RM21]. During prompting, a
text snippet is added to unlabelled data; this allows the downstream
tasks to be represented in the format as pre-training objectives, and
requires no new parameters, enabling model learning without hav-
ing to finetune for each task. Prompt construction is an active re-
search area; we focus on a technique that extends prompting to bet-
ter define benchmark tasks, called ‘natural language instructions’.
This approach stems from NLP benchmark creation via crowd-
sourcing, where instructions are given to crowdworkers for sample
creation pertaining to a particular task [GGB19,EL20]. Natural lan-
guage instructions are a versatile means of defining goals; they have
previously been studied in applications such as SQL translation
[KSHL20] and interaction within a visual environment [STG∗20].
Instructions describe tasks in natural language [WLGP20], and
guide PLMs to generalize to unseen tasks [MKBH21,WBZ∗] with-
out requiring task-specific training (see Figure 2). Meta-datasets
(i.e., datasets of datasets) [TZD∗] of human-authored instructions
(as shown in Table 1) have been used as benchmarks for cross-task
generalization in PLMs.
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Meta-Dataset SUP-NATINST+,⃝

[WMA∗22]
NATINST⃝

[MKBH21]
PROMPT-SOURCE

[BSY∗22]
FLAN+

[WBZ∗]

Number of Tasks 1616 61 176 62
Number of Instructions 1616 61 2052 620
Number of Task Categories 76 6 13 12
Average Task Definition Length (in words) 56.6 134.4 24.8 8.2

Table 1: Notable open-source meta-datasets of natural language instructions. ⃝ : indicates the presence of negative examples in the task
instruction. + : indicates the presence of non-english tasks.

2.2. Bias in Instructions

Prior work has shown that crowdsourced natural language bench-
marks exhibit various spurious biases (i.e., unintended correla-
tions between input and output), that lead to overestimation of
PLM performance [SSK∗17,PNH∗18,GSL∗18,LBSB∗20]. Several
techniques have been proposed to handle such bias post-creation,
including improving linguistic diversity of samples [YZFBC∗20,
LML∗19, SYH20] and augmenting data with adversarial samples
intended to fool the model [WRF∗19,KBN∗21,TYLB∗]. Similarly,
there is evidence that natural language instructions provided by
dataset creators during crowdsourcing influences crowdworkers to
follow specific patterns during sample creation [GGB19,PMGB22,
HSG∗21]. These patterns, termed as ‘instruction bias,’ propagate to
the dataset and are subsequently over-represented in the collected
data. For instance, the crowdsourced DROP dataset [DWD∗19]
defines a reading comprehension task where discrete reasoning
(e.g., addition, sorting, or counting) must be done based on a
paragraph of text. The given instructions contain examples for
reference during sample creation; 70% of these examples begin
with "How many [field goals | yards | points |
touchdowns]" Subsequently, ∼ 62% of the crowdsourced data
samples in both the train and test splits begin with the same pattern
of phrasing [DWD∗19].

2.3. Visual Analysis of Natural Language Benchmarks

The majority of prior approaches for handling data bias in NLP
benchmarks focus on the adjustment of hyperparameters for ma-
chine learning models, or on artificially rebalancing the biased
datasets post-creation [LV19, LLV18, KHL, GAB∗20, NWD∗20].
For instance, users can be encouraged to rephrase highlighted por-
tions of text that are important for a model to make a prediction to
promote adversarial sample creation during benchmark construc-
tion [WRF∗19, KBN∗21, TYLB∗, AIP15, Van19]. Visual analysis
tools that afford NLP leaderboard probing through metric cus-
tomization have also been proposed as a way to isolate model bi-
ases [MA21b]. The visualization of bias detection algorithm re-
sults [LMT∗20, LMTT] has been leveraged to inform non-expert
data creators on what constitutes data bias, although the specific use
of visualization for analyzing NLP benchmarks is relatively under-
developed. Considering the problem of biased data more generally
across machine learning and deep learning, related visualization
techniques and tools have been developed to analyze dataset biases,
vulnerabilities, predictive fairness [CEH∗19, MXLM19, WXC∗20,
CMJ∗20], although these tools are designed to address different
tasks and goals than LINGO. More specifically, LINGO examines
a wide array of linguistic features to identify and resolve instruction

bias. Analytical capabilities are balanced with visualization tech-
niques catering to both expert and non-expert prompt authors.

3. Design Process and Goals

To help motivate our system design, we surveyed five NLP prac-
titioners (with 4–6 years of experience in investigating data bias
and prompt authoring). Our motivating question was: what are
the salient challenges in the identification and reconciliation of
instruction bias, where visual analytics can be a key approach
for providing insights/solutions? Table 2 summarizes several chal-
lenges that were explicitly discussed by the practitioners. All partic-
ipants noted that bias detection in NLP benchmarks is mainly per-
formed as a post-hoc analysis using backend code and algorithms,
however there are no standardized practices or metrics for isolating
bias. If implemented, bias reconciliation primarily involves either
data augmentation or model restriction. Importantly, visualization-
based approaches for bias detection and reconciliation in both NLP
instructions and datasets are relatively unexplored.

Challenges for Analyzing Instruction Bias

(5) Wide range of instruction features that can cause bias * DR1,DR2
(4) Difficult to juxtapose samples to identify bias sources * DR3
(4) Different instruction types will exhibit different biases * DR1,DR5
(3) PLM performance depends on instruction quality * DR4
(3) Instruction examples dictate created sample diversity * DR4,DR5
(3) Instructions optimal to a model may not be optimal for humans

Table 2: Our survey with NLP experts identified several items as
salient challenges for analyzing instruction bias. We note the num-
ber of users who referenced each challenge in parentheses. Items
addressed by our current tool are noted with an asterisk, and are
mapped to derived design requirements.

Based on the challenges listed in Table 2, we derived a set of five
high-level design requirements (DRs) that a visual analytics system
can employ for analyzing and reconciling instruction bias.

DR1: Compare instructions in a categorized manner. Writing
style is dictated by the task category, domain (reasoning type), and
dataset for which the instruction is created; this must be accounted
for when comparing instructions within or between categories.

DR2: Allow granular analysis of different parts of an instruc-
tion. Instructions consist of the task definition and examples (posi-
tive and negative) with explanation. We consider the entire instruc-
tion for analysis as an overview comparison against constituent data
samples used for PLM evaluation. However the biases exhibited
within and between different parts of the instruction may vary, so
multi-granular analysis can be particularly beneficial.
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Figure 3: Task categories in SUP-NATINST.

DR3: Support juxtaposition of instruction examples and
data samples. The modification of instructions to reduce instruc-
tion bias is contingent on the relationship between instruction ex-
amples and data samples. Examples must have sufficient inductive
bias to inform a PLM/crowdworker of the task, but must also ex-
hibit sufficient diversity so sample creation isn’t artificially con-
strained.

DR4: Evaluate PLM on modified instructions in situ. Instruc-
tion effectiveness must be gauged in situ in terms of PLM perfor-
mance. This ensures that instruction modification to reduce instruc-
tion bias still retains sufficient inductive bias for the model to learn.

DR5: Provide multiple perspectives for analysing bias fea-
tures. Instruction bias can arise from a wide variety of linguis-
tic features. Task-agnostic features must be selectable to facilitate
analysis of different instruction categories.

Notably, a significant constraint in successfully addressing
DR1–DR5 is that the target user base (prompt authors) likely lacks
visualization expertise. Therefore, in keeping with a design study
methodology [SMM12], when implementing LINGO we adhered
to the standard of a “well-justified combination of [primarily] ex-
isting techniques.” This allowed us to balance the analytical insight
and power provided by LINGO, while not overwhelming them with
overly complex or esoteric visual encodings, or requiring a steep
learning curve. We also note that LINGO is designed to poten-
tially benefit both expert and non-expert prompt authors during in-
struction creation for PLM evaluation; additionally, instructions for
crowdsourced data collection can be improved, based on insights
gleaned by dataset creators.

4. Dataset Schema

To demonstrate LINGO, we use a state-of-the-art meta-dataset
of task instructions, called Super-Natural Instructions (SUP-
NATINST) [WMA∗22]. This benchmark consists of 1,616 NLP
tasks along with their natural language instructions; 76 task cat-
egories span 55 different languages (576 non-english tasks) are
present (Figure 3 shows the diversity and sizes of the 76 task cate-
gories). These tasks were contributed by 88 NLP practitioners in a
crowdsourced manner. SUP-NATINST is considered state of the art
for model evaluation on task instructions.

Instructions are represented via a unified schema, as shown in
Figure 2. Broadly, schema ingredients are defined as follows:

• Definition defines a given task in natural language. This is a

complete definition of how an input text (e.g., a sentence or a
document) is expected to be mapped to an output text.

• Positive Examples are samples of inputs and their correct out-
puts, along with a short explanation for each.

• Negative Examples are samples of inputs and their incorrect or
invalid outputs, along with a short explanation for each.

Task instances (i.e., data samples to be solved by the model given
the instruction) are organized as textual input and a list of accept-
able textual outputs. The number of instances is limited to 6.5K per
task to avoid instance imbalance, as done for model evaluation in
SUP-NATINST [WMA∗22].

A single dataset can be used to generate multiple subtasks; for
instance, the SNLI dataset used for the task in Figure 2 is used
to generate 12 tasks in total for SUP-NATINST pertaining to the
task categories of answer generation, wrong answer generation, text
modification, and classification.

Bias Category Features Evaluated

Diversity Sample Length [WRF∗19], Unique Vocabulary
(new words introduced) [YZFBC∗20, LZM∗20]

Similarity N-gram/POS-tag (part-of-speech tags: nouns,
verbs, adjectives, adverbs): Frequency, Over-
lap, Jaccard Similarity [WRF∗19, YZFBC∗20,
LML∗19, PNH∗18, GSL∗18]

Component
Bias△

[ENT] × [ENT] Overlap [LML∗19], [ENT] ×
[ENT] Correlation [SYH20, WRF∗19]

Table 3: LINGO supports three bias categories, each com-
posed of several available metrics. △ [ENT] represents {task
instruction | definition | example (posi-
tive/example/both) | task instance}

5. Instruction Bias Measures

LINGO supports three broad categories of instruction bias mea-
sures, based on existing bias identification measures for NLP
benchmark analysis. Table 3 defines the categories of instruction
bias supported in the system, along with the evaluation metrics cu-
rated from prior research for each category. (LINGO is also exten-
sible to accommodate additional measures.)

Broadly, diversity examines an individual task instruction, while
similarity juxtaposes multiple task instructions; both utilize the
full instruction in calculation. Component bias compares different
parts of instructions and task instances; this can be done (i) within
or between tasks (e.g., a positive example from Task X can be com-
pared to a task instance either from Task X or any other task), and
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(ii) at multiple granularities (sentence/word/part-of-speech tag/n-
gram). Metrics are calculated using the NLTK library [LB02] with
a Python API; text pre-processing involves stop-word removal, to-
kenization, POS tagging, and lemmatization.

6. LINGO

We now describe LINGO’s system design. The system is a full-
stack application, with a backend server for data storage, query,
and NLP-based computation, and a frontend interface for visual-
ization and interaction. For examples of how LINGO can be used
to analyze and reduce instruction bias, see the usage scenario in §7
and the demo video include in the supplemental materials.

6.1. Backend

The backend server is built using Python and Flask, and acts as the
storage and service layer between the instruction dataset and the
frontend user interface. A MongoDB [MON] database stores the
tasks as JSON objects, supporting quick retrieval.

Based on a user’s choice of (i) task instruction(s) to analyze,
(ii) components of the instruction to include in the analysis, and
(iii) bias metric(s) to be used, we retrieve instruction(s) from the
database (this supports DR2) and perform necessary metric com-
putations (see §5) to populate the front-end panels (thus support-
ing DR5). We evaluate a subset of task instances using a Python
script to call on the GPT-3 [BMR∗20] Open API (davinci-instruct-
beta-v3), on load/modification of task instructions (DR4). We fol-
low [MKBH21] and treat the tasks as text-generation problems, us-
ing ROUGE-L [ROU04] to automatically evaluate the generated
outputs and visualize the results.

6.2. Frontend

Figure 4 shows an overview of LINGO’s frontend interface. It con-
sists of five panels (A)—(E) which are linked via coordinated in-
teractions (e.g., hovering on or selecting a task instruction in one
view highlights or selects the instruction in other views) and de-
signed to support the five DRs described in §5. We use fixed color
scales that accommodate users with color-impaired vision using the
R colorspace toolbox.

(A) Overview Panel. The overview panel consists of a t-SNE
projection, where each point is a task instruction. The pairwise dis-
tances between instructions is based on sentence embedding dis-
tances, calculated over the complete task instruction (i.e., def-
inition+examples). We use t-SNE here as it ably preserves
geometry for nested clusters of varying density, though LINGO is
easily extensible to support MDS, PCA, etc. This projection can be
rendered both on a traditional 2D plane, or as a rotatable 3D sphere;
we model the embedding sphere after embedding projectors used in
TensorFlow. Regarding this latter encoding option, in particular we
found during early testing that a 2D projection was at times overly
cluttered, which made it difficult to identify and select individual
points (in particular, translation tasks, which accounted for ∼24%
of the tasks in the dataset used, often contained very similar phras-
ing). Toggling to a 3D projection could provide a better separation

of points and identification of clusters. However, filtering is some-
times necessary to enhance scalability and prevent clutter for larger
or more closely distributed datasets. Point color represents the cat-
egorization of the instructions based on task type/domain/source
dataset (DR1). (a1) A color legend can be viewed by clicking on a
toggle icon. (a2) allows interacting with the sphere projection; ro-
tation along x/y/z axes is done via arrow keys. (a3) The basis for
categorizing task instructions can be changed with the dropdown;
the default categorization is based on task type (i.e., the nature of
the task). Mousing over of a point highlights all task instructions
belonging to the same category; a tooltip details the category of the
task and (a4) a text area shows the source dataset, domain, and defi-
nition of the task; users can also search for a specific task by typing
in this text area. Clicking on a point selects the corresponding “root
instruction” for further analysis, along with the k-most highly cor-
related instructions with respect to the root instruction (k default:
9). For the selection, the root node is colored red, and the addi-
tional k nodes are assigned blue shades based on their correlation
amount. Additional instructions in the same category as the root
instruction remain colored with decreased opacity; all other points
are toggled to grayscale with decreased opacity. (a5) Clicking a re-
fresh icon clears the selection, resets the sphere to the default view,
and clears other panels in the display.

(B) Correlation Panel. This panel displays the selected root and
k instructions (from (A)), with a node-link diagram. Each node
represents an instruction, colored and labelled in order of corre-
lation (sentence similarity). (T1 represents the root instruction and
is colored red, T2 represents the most correlated node, and so on.)
Links between nodes indicate a similarity score over a threshold
(adjustable using (b1), default: 0.5). Mousing over (or clicking) a
node displays its similarity score in a tooltip, as well as the text
of the corresponding root and task instructions (in (b2) and (b3)).
Mousing over (or clicking) a link displays the instructions corre-
sponding to the end nodes in (b2) and (b3) and also the similarity
between the nodes in a tooltip. The tabs in (b2)/(b3) allow viewing
either the full instruction/definition/positive/negative examples for
comparison (DR2). We preserve positional information from the
3D embedding space through the use of these network links, which
indicate the strength of the relationship between two tasks at dif-
ferent granularities. The color scale assigns more similar samples
with darker colors. Also, the similarity thresholds to draw links and
the k-value can be customized by the user; therefore the range of
similarity considered varies. (B) hence streamlines the selection of
a subset of tasks from A that implicitly provide contextual infor-
mation for the root task instruction. This is particularly important
when using models such as ChatGPT which can remember several
previously entered instruction prompts.

(C) Instruction Decomposition Panel. This panel shows inter-
task relationships between the selected root and k instructions
using a chord diagram. Multi-granular comparison can be done,
based on sub-components of the task instruction chosen for ex-
amination. Specifically, the inter-task relationship is examined in
terms of normalized length/normalized word overlap correlation
(chosen from (c1)). Sub-components that can be used for anal-
ysis are: {task instruction | definition only |
example only (positive/example/both)}(DR2), se-
lected using (c2). The task labels and color scheme follow (B);
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Figure 4: LINGO consists of 5 panels to support (A) overview and selection of instructions, (B) examination of instruction correlation, (C)
instruction decomposition and comparison, (D) model evaluation with instructions, and (E) inspection and resolution of instruction bias.

chord ribbons are drawn between tasks with relational values over
a threshold (see (c3), default: 0.5). Color corresponds to task color,
and thickness represents the strength of the relation. Mousing over
(or clicking) a chord highlights its corresponding tasks with labels
displaying the similarity values. Additionally, the corresponding
tasks are highlighted in (B), and (b2) and (b3) are populated. (C)
explicitly highlights which sub-components of the task instruction
that contribute the highest bias. By tracking the linguistic diver-
sity used for low-bias tasks connected to the root instruction with
chords, users can understand the scale and nature of instruction
modification required.

(D) Model Results Panel. This panel displays the model eval-
uation results for task instances corresponding to the subset of in-
structions in (B); (d2) is used to select the model for evaluation.
As noted in §6.1, we use GPT-3 (DR4). Each beeswarm plot repre-
sents a task (T1–T10); ordered and colored by its correlation to the
root instruction. The y-axis plots the accuracy of GPT-3 on the task
instances. Each task instruction is evaluated by testing the model
on 6.5K task instances; (d1) denotes the GPT-3 accuracies for all
tasks. To reduce clutter, we perform an aggregation step: the task
instances are grouped into 20 equidistant bins based on their word
similarity to the positive and negative examples given in the task
instruction as [0.00− 0.05], [0.05− 0.10], ..., [0.95− 1.00] (DR3).
The average accuracy over instances belonging to each bin is plot-
ted as the y-axis value (meaning each beeswarm displays up to 20
points). The size of the point represents the number of task in-
stances present in that bin (if a bin is empty, it is not plotted as
a point). Mousing over (or clicking) a points displays: (i) a tooltip
with the number of instances, and similarity bin limits, (ii) a set
of positive and negative examples for the corresponding task in
(d3), and (iii) a set of three task instances from the correspond-
ing similarity bin, which have the highest word overlap with the
examples in (d4). To summarize, this panel examines the influence
of instance-example similarity bias on model performance, i.e., are

the examples given in the task instruction sufficiently diverse to en-
able to model to generalize to unseen instances?

(E) Bias Metrics Panel. This final panel can be used to asses
instruction bias using metrics that gauge diversity and similarity
of instructions (see Table 3). (e1) The user can can select the sub-
components of the instruction to analyze (DR2), (e2) and can also
select desired bias metrics (DR5). Frequency based metrics (for n-
grams and POS Tags), sample length, and unique vocabulary count
are represented using bar charts, where each bar corresponds to a
task (Figure 5(6.3) shows an example). These metrics are only ap-
plied to the task instruction, and measure the diversity of the task.
Overlap (normalized) and Jaccard Similarity for n-grams and POS
Tags is plotted with a heatmap, where increasingly dark pink shades
represent values closer to 1. These metrics compare the similarity
of the task instruction to the task instances. The task instances are
grouped into 10 equal-spaced bins as [0.0−0.1]...[0.9−1.0], based
on normalized word similarity to instruction examples). Clicking
(e3) opens a dialog window where the definitions and/or exam-
ples of any one task instruction (from T1-T10) can be modified
(see demo video, Figure 5(6.1)). On submitting the new instruc-
tion, panels (A)–(E) update accordingly, where the modified task
instruction now serves as the new root instruction. We use either
heatmaps or bar charts to represent cross-task bias statistics. This
is done to differentiate the nature of the quantities being compared,
i.e., as normalized ratios or absolute counts. Thus, users are less
likely to conflate bias-metrics used to identify which specific mod-
ification patterns will optimally reduce instruction bias.

7. Usage Scenario

To help illustrate how LINGO can be used to analyze instruction
bias, we now present a use case scenario with Owen, a prompt au-
thor who is analyzing instructions created for Text Modification
(TM) tasks (see supplementary material for additional case stud-
ies). Figure 5 shows his workflow.
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Figure 5: The interactions taken during the Usage Scenario described in §7.

(1) Owen first searches for instructions corresponding to TM us-
ing the overview panel. He notices that TM instructions show large
embedding distances (1.1), with the formation of local clusters if
instructions use the same source dataset or domain (1.2, 1.3). This
is in contrast to other tasks like translation, where a majority of
points are clustered in the same region across source datasets (1.4).
Owen selects a TM root instruction, originally from the SNLI
source dataset [BAPM15] for further analysis. The root instruction
is colored red (T1), and the 9 most highly correlated instructions
(T2-T10) are colored in shades of blue.

(2) In the Correlation View, Owen sets the threshold for links to
0.7. He notes the variation in correlated instructions’ task domains,
types, and sources (see Table 4). On further examination, Owen re-
alizes that all the TM instructions use the same SNLI source dataset
as T1. Another interesting instruction is T8. It has links to T1 and
T3, and belongs to the same task domain: Text Entailment. T2–T4
use nearly verbatim definitions in task instructions when compared
mutually, as well as against T1, as highlighted in Figure 5.

(3) Owen decides to compare the word overlap between the pos-
itive examples of T1–T10 (chord threshold: 0.6), in order to under-
stand why different task types are highly correlated. He finds that
between T1–T4, positive examples show high word overlap (3.1);
on examining the text, they are seen to only marginally differ in
explanation. T6 and T8 use similar explanation phrasing to T1–T4

for positive examples (3.2). Similarly, word overlaps between the
T5, T9 and T10 examples arise in the explanations of the positive
examples (3.3).

Task ID Source Dataset Task Type Task Domain Correlation [0,1]

T1 SNLI Text Modification Text Entailment 1.000
T2 SNLI Text Modification Text Entailment 0.920
T3 SNLI Text Modification Text Entailment 0.919
T4 SNLI Text Modification Text Entailment 0.911
T5 ROC STORIES Sentence Ordering Deductive 0.858
T6 XCOPA+ Classification Causal 0.850
T7 ASSET Text Simplification Commonsense 0.842
T8 SHERLIIC Text Entailment Text Entailment 0.838
T9 ROC STORIES Text Completion Commonsense 0.836
T10 ROC STORIES Text Completion Commonsense 0.836

Table 4: Tasks with most highly correlated instructions, with re-
spect to a selected root instruction (T1). + : non-english input.

(4) On observing the GPT-3 results for task instances from T1–
T10, Owen notes a general trend across all the datasets: task in-
stances in bins with higher word similarity (> 0.7) to the instruc-
tion examples are more accurately solved. Owen confirms that T1–
T4 and T7 show similar performance distributions, with most of
the high-performing task instances being in high similarity bins.
T5 and T8–T10 have a greater proportion of task instances located
in bins ranging from [0.55-0.75]; these bins achieve ∼20-35% ac-
curacy. T6 is an outlier with a more uniform distribution of task
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instances in similarity bins, all ranging from ∼20-30% accuracy.
Owen partially attributes this to T6 containing non-English input.
Owen then juxtaposes top ranked task instances belonging to bins
[0.85-0.90] against instruction examples for T1-T4. He notes that
these task instances follow similar topics to the examples, and are
solved using similar output patterns, as highlighted in Figure 5(5).

(5) Owen checks the unique vocabulary contributed by examples
in each task instruction (5.1). He finds that T6 and T7 contribute the
highest unique vocabulary, while T1–T4 contribute the lowest. T6
and T7 are also the hardest for the model to solve (as previously
seen in (4)). Next, Owen examines the Jaccard Similarity of ad-
verbs across full task instructions compared against their respective
task instances (5.2). Here, T5–T7 show the lowest values, which
indicates higher variation in the data. Owen can partially attribute
this to non-repetition of phrases from the definition in the example
explanations.

(6) Finally, Owen modifies the task instruction for T1, in order to
(i) reduce the similarity bias between instruction examples and task
instances, and (ii) reduce overlap between the instruction definition
and instruction example explanations. He updates the definition and
replaces a positive example, so that the instruction now contributes
a higher proportion of vocabulary and adverbs (6.1). Owen notices
that the beeswarm updates (6.2) for T1 to show decreased overall
performance, with fewer samples in similarity bins > 0.9 as well
as fewer samples crossing 80% accuracy. Additionally, T1 now ex-
hibits lower Jaccard similarity (6.3) and higher unique vocabulary
(6.4). Overall, Owen’s modifications achieve a decrease in accu-
racy, Jaccard similarity for words, POS-tags, and n-grams, and an
increase in unique vocabulary. Hence by iteratively changing the
task instruction (for instance, replacing more examples) Owen can
further reduce instruction bias for T1, and create a more difficult
task instruction for the model to solve.

8. User Study

To further evaluate LINGO from an empirical perspective, we con-
ducted an in-person qualitative usability study composed of both
novice and expert prompt instruction creators, using the SUP-
NATINST dataset. The study utilized think-aloud protocol, as well
as a post-study questionnaire and feedback session about the expe-
rience of participants using LINGO. This allowed us to robustly un-
derstand how the insights afforded by LINGO (as well as its overall
usability) compared both for novice users and domain experts.

Participants began the study by completing a short survey to col-
lect demographic information and background knowledge. After
this, three stages were run:

Training. The participants were first given an overview and us-
age scenario (with text modification tasks) of LINGO’s function-
ality, and could ask questions and play with the system until they
feel confident to proceed. Study participants were familiarized with
using the visual idioms, interactions, and color mappings (since ex-
plicit legends are not provided in the interface).

Exploration. Participants were then allowed to freely explore
the system for up to 30 minutes. To constrain the study design, we
limited participants to analysis of question-answering task instruc-

tions. During this stage, participants use think aloud protocol to
verbalize their thought processes and actions [FKG93].

Review. Participants then completed a short feedback survey
about the system’s affordances and user experience using Likert
scale ratings (1 – strongly disagree, 7 – strongly agree). Partici-
pants also had the opportunity to provide freeform comments, sug-
gestions, and criticisms about the interface and their experience.

Participants. We recruit 16 participants (age µ = 25.46 year, σ

= 3.04, 10 males and 6 females) studying Computer Science from
<Anonymous University>. All participants were proficient in En-
glish and had normal (corrected if necessary) eyesight. Participants
reported familiarity with instruction authoring based on a 7-point
Likert scale: µ = 4.26 (σ = 2.14). All study participants reported
relative non-expertise with data visualization (familiarity: µ = 2.33,
σ = 1.68). LINGO was displayed in Google Chrome on a 24-inch
monitor (3840× 2160 resolution) with keyboard and mouse, con-
nected to a MacBook Pro running macOS Monterey. QuickTime
Player recorded session screencasts and audio. We classified users
as novices (familiarity: 1-3, 7 users: n1–n7, µ = 2.38, σ = 0.61) or
experts (familiarity: 4-7, 9 users: e1–e9, , µ = 5.41, σ = 1.72) for the
purpose of post hoc analysis. None of the novice users had previ-
ously taken a graduate course in NLP or authored instructions; two
had previously participated in NLP benchmark crowdsourcing. On
average, novice users spent 19.37 minutes (σ = 3.44 minutes) and
expert users spent 25.21 minutes (σ = 1.92 minutes) using LINGO.

8.1. System Ratings from Survey Response

Figure 6 summarizes study results from the quantitative survey.
(Note: All results are found to have p ≤ 0.02 based on running
a t-test.) This figure aggregates both novice and expert responses,
as general trends remained consistent for both user groups. Over-
all system ratings (Q1—Q11) were generally positive, including
that it is easy to learn, use, and comprehend (Q10–Q3), it sup-
ports meaningful analysis (Q5-–Q9), and encourages participants
to think about instruction bias during prompt authoring and crowd-
sourcing (Q10—Q11). Responses about specific interfaces features
(Q12—Q21) indicate that they are also generally well received.

8.2. Support for User Insights

Based on the recorded think-aloud utterances by our seven novice
and expert participants (n1–n7 and e1–9), as well as freeform feed-
back collected during the review stage, we performed an open cod-
ing technique based on grounded theory [WM06] to understand the
types of support, insights, and user experiences that LINGO specif-
ically promoted to our study participants. We summarize four key
takeaways below.

For novices, the interface was paradoxically both easy to
use and too complex. We received several comments from novice
participants about LINGO being “easy to use”(n6,n5) and “cohe-
sive and easily navigable pipeline”(n1,n7). “I like how you can
easily focus on different sub-components of the instruction and
that changes how its relationships look... [it] helps me streamline
my analysis” (n7). Paradoxically, other users sometimes felt over-
whelmed by the system’s available features, such as the number
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Figure 6: Overall ratings from the post-study survey about various
system aspects. Median ratings are indicated in grey.

of bias metric choices that were available. “I’m keeping up until
the model results, it’s difficult to juxtapose them with the bias met-
rics" (n3). “The chord diagram was new to me, though I got the
hang of it after a couple of minutes” (n1). Multiple users thought
that follow-up sessions or helper widgets would lead to more ef-
ficient analysis: “I’d like some more time to go through the tasks,
so I understand how to use the bias metrics to change the instruc-
tion” (n3,n2). “[S]omething like a widget that tells you in plain text
what the high-level impact of this bias metric is... helps clarify how
to translate bias identification to instruction modification" (n3,n4).
This mixed feedback is likely due to a lack of domain knowledge
by some novices, which hampered their user experience.

Novices echoed experts when defining instruction bias post-
study. Many of the novice and expert participants agreed in con-
jecturing that instruction bias likely arises when: (i) “the exam-
ples are all too similar amongst themselves" (n1,n2,e4), (ii) “the
example explanations reiterate the definition exactly, without new
contextual information" (n3,e9), (iii) “the beeswarm is top-heavy,
meaning lots of high similarity instances exist and are correctly
solved" (n7,e2), and (iv) “if one person creates multiple instruc-
tions for a dataset, they are probably following the same patterns
throughout...they use the same words, phrases, and topics for ex-
amples" (n3, e8). LINGO is therefore able to support effective and
accurate analysis by both novel and expert users.

The beeswarms were effective for recognizing how instruc-
tion bias inflates model performance. Several participants appre-
ciate the beeswarm representation of task instances as being “... an
intuitive way to represent a large amount of data"(e1,e3,n2,n5). “I
like that you can drill down and see representative task instances...
compare them with the examples"(n4,e6). Participants also found it
useful to use the beeswarm and chord diagrams to filter out which
bias metric and tasks to focus on. “I decided that these [four tasks]
have a lot of mutual connections and the beeswarms are top-heavy,
so I’m going to check the Jaccard similarities for those tasks" (e2).
“See how Task 6 has low accuracy but Task 3 has high accuracy?
Let’s check the unique vocabulary contribution... I was right [Task
6] has it higher (e8). “If you look at sentence lengths, you can see
longer instructions with shorter example explanations seem to have
better performance" (n1). Several experts also found in situ model
results useful while modifying instructions–“... [results] ground
how I’m changing the instruction. I can see what does and does
not work to reduce instruction bias, and further ensure I still have
sufficient inductive bias for the model." (e2) and “I can see this be-
ing applicable to analyze bias any sort of benchmark data. We have
the human, model, and metrics all simultaneously involved" (e4).

Participants are able to identify potential caveats to re-
ducing instruction bias. Several participants pointed out that
reducing instruction bias requires a learning curve in identifying
what constitutes a positive change to reduce model performance.
“I thought putting lots of synonyms in would help...I guess I
need to restructure the definition completely." (n4,n5). However,
participants also recognized that the nature of changes might
lead to unnatural language. “If I keep paraphrasing [this way] to
reduce model performance, I’ve got a shortcut to doing the bias
reduction... but the instruction looks strange now so this wouldn’t
happen in the real-world" (n1,e2). A couple of participants also
questioned the overall effect of the changed instruction on dataset
bias: “I could be making a only a local optima... my highest
correlated instruction group will change." (e3,n4).

9. Discussion

Based on our conducted usage scenario (§7) and user study (§8),
LINGO robustly supports DR1–DR5 described in §3. Here, we dis-
cuss several takeaways from the design, implementation, and eval-
uation of LINGO, to synthesize generalizable actionable insights
for visualization and NLP communities.

Novice users recognize broad sources of instruction bias; ex-
perts can see research possibilities. While both of our user study
groups could use LINGO to analyze task instructions, one signif-
icant takeaway from the study was that the types of insights dif-
fered based on the user’s experience. Novice users could iden-
tify instances were instruction bias exists, but generally could only
make broad conclusions about bias. Experts, already familiar with
instruction bias and its impact, could leverage LINGO to explore
deeper nuances about bias. Subsequently, their instruction modi-
fications were generally more effective in reducing bias. As the
pre-study in §3 did not explicitly consider various levels of user
expertise, such a result is not wholly unexpected. Future analysis
systems for novices can be tailored to accommodate their lack of
domain expertise.
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Explicitly flagging bias in-text while authoring. Several
novices noted that instruction modification proved challenging,
given the potential that a modification could introduce new types
of instruction bias; several requested that bias be explicitly high-
lighted in text. While this is possible, there is a risk that ex ante la-
beling could render such users dependent on the classification out-
puts of a model or annotator, again constraining the patterns they
might follow during instruction authoring and data creation. A pos-
sible strategy might be to allow users to define and highlight pat-
terns of interest during analysis, that will be subsequently flagged
when they modify an instruction, but we leave this as future work.

The need for visualization tools in NLP Expert participants in
our study were long-time researchers (+ 4 years) in NLP, but none
had previously encountered or used visual analytics tools focus-
ing on NLP text bias. While many backend algorithms and text-
highlighting driven interfaces catering to bias identification and
resolution have previously been published in the NLP community
(e.g., [KHL]), there is a lack of standardization and adoption. In
view of this, tools like LINGO can simplify the overhead involved
in bias identification post-creation, by providing an in situ pipeline
to procedurally target bias during text authoring.

Designing for non-expert visualization users. Even though our
user study participants were non-experts in visualization, they were
still able to use the system to probe task instructions and glean in-
sights to reduce instruction bias. LINGO’s focus on selecting and
utilizing familiar visual techniques therefore provides a cohesive
pipeline for instruction analysis, that facilitates a lower learning
curve. Particularly, the provision of visually distinct panels to an-
alyze different bias aspects reduces the potential for users to con-
flate/become overwhelmed by different choices for bias analysis,
e.g.: users shortlist which aspect of bias to drill down on for in-
struction modification, despite experiencing visual novelty, by us-
ing panels in tandem. LINGO further motivates the necessity to
standardize bias quantification and elimination in NLP. This is a
non-trivial problem, but we believe visualization can likely provide
an important step in the process, by helping researchers identify
where the principal issues are present.

System Limitations and Future Work In particular, the user
study helped us to identify several areas where LINGO (or tools
like LINGO) could be improved in or expanded to the future. In
particular, we note three here:

(1) Recommendations for Instruction Modification: Instruction
modification was at times difficult for novice authors, given that
instructions must retain sufficient inductive bias for the model to
learn after modification. Particularly, for tasks like custom text gen-
eration, specialized contextual information must be provided in the
instruction. For instance, in order to create instructions for a model
to write the bio of a user, the user must provide sufficient personal
information. The authoring/modification of such task instructions
is therefore a complex process. Approaches like [MN22] involve
prompting models to ask relevant questions to reduce the cognitive
load on the user, in identifying key information specific to a par-
ticular task type. Such approaches can be extrapolated to provide
recommendations during instruction modification that are tailored
to reducing the level of bias present in an instruction. Such bias re-
duction techniques could therefore be less likely to introduce new

types of bias. Another relevant approach to author instructions with
richer contextual information is to provide the language model with
multiple variants of the same instruction at once, which define the
task from different perspectives [PMPB22]. This has proven useful
for improving model performance, particularly on low-data tasks.

(2) Expanding Evaluation: While LINGO successfully incor-
porates human, model, and metric-based feedback in our analysis
paradigm, the model and metric-based feedback is restricted by the
chosen domain. Instruction bias examination necessitates the use
of PLMs capable of accepting instructions as input, along with a
limited number of task-agnostic metrics to gauge bias. Future stud-
ies can broaden the scope of LINGO’s analysis to quantitatively
identify textual data bias at scale, for both instructions and NLP
benchmarks, across a wider array of language models and with cus-
tomized bias metrics [MABB20, MA21a]; LINGO is easily exten-
sible to integrating new metrics in either the front/backend to better
support expert users. By quantitatively evaluating “data quality” in
this manner, it may be possible to establish more standardized pro-
cedures for bias quantification and resolution, leveraging visualiza-
tion for analysis and verification.

(3) Extensibility to Prompting for Multimedia Data LINGO fo-
cuses on text-based task instructions, covering diverse applications,
that do not involve images and are purely based on text data. A key
challenge in extending LINGO to analyze prompts for multimedia
data is the potential lack of human-interpretable bias features. For
instance, “concepts” (a group of pixels that express a meaningful
notion in an image) are an explanation technique for image classifi-
cation [KWG∗18]. These could potentially be useful in reconciling
a text prompt with a produced image. However, additional explain-
ability techniques produce their own complexities. For example,
image generation models might heavily rely on bias between n-
grams in an input prompt phrase and a highly abstract concept in a
produced image, and such bias might not be easily understandable
to humans. Recent papers (e.g., [HMKB22]) explore visualization-
drive strategies for analyzing these sorts of algorithms, and their
techniques could be incorporated into tools like LINGO that ex-
pand to additional multimedia-based prompting.

10. Conclusion

We present LINGO, a novel visual analytics interface that sup-
ports an effective, task-driven workflow to (1) help identify bias
in natural language task instructions, (2) alter (or create) task in-
structions to reduce bias, and (3) evaluate pre-trained model perfor-
mance on debiased task instructions. Our evaluations demonstrate
how LINGO promotes the creation of more difficult tasks for pre-
trained language models that contain higher linguistic diversity and
lower instruction bias. We also discuss how visual analytics tools
like LINGO can reduce the effort involved in prompt creation, in-
cluding with constraints like increasing task diversity and lowering
instructional bias, across additional domains.
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