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Abstract

Models that top leaderboards often perform unsatisfactorily
when deployed in real world applications; this has necessi-
tated rigorous and expensive pre-deployment model testing.
A hitherto unexplored facet of model performance is: Are our
leaderboards doing equitable evaluation? In this paper, we
introduce a task-agnostic method to probe leaderboards by
weighting samples based on their ‘difficulty’ level. We find
that leaderboards can be adversarially attacked and top per-
forming models may not always be the best models. We sub-
sequently propose alternate evaluation metrics. Our experi-
ments on 10 models show changes in model ranking and an
overall reduction in previously reported performance— thus
rectifying the overestimation of Al systems’ capabilities. In-
spired by behavioral testing principles, we further develop a
prototype of a visual analytics tool that enables leaderboard
revamping through customization, based on an end user’s
focus area. This helps users analyze models’ strengths and
weaknesses, and guides them in the selection of a model best
suited for their application scenario. In a user study, members
of various commercial product development teams, covering
5 focus areas, find that our prototype reduces pre-deployment
development and testing effort by 41 % on average.

Introduction

Machine Learning (ML) models have achieved super-human
performance on several popular benchmarks such as Im-
agenet (Russakovsky et al. 2015), SNLI (Bowman et al.
2015) and SQUAD (Rajpurkar et al. 2016). Models selected
based on their success in leaderboards of existing bench-
marks however, often fail when deployed in real life appli-
cations. A hitherto unexplored question that might answer
why our ‘optimal’ model selection is sometimes found to
be ‘sub-optimal’ is: Are our leaderboards doing equitable
evaluation? There are two aspects associated with model
evaluation— performance scores and ranking. Existing evalu-
ation metrics have been shown to inflate model performance,
and overestimate the capabilities of Al systems (Recht et al.
2019; Sakaguchi et al. 2019; Bras et al. 2020). Ranking on
the other hand, has remained unexamined.

Consider that Model X is ranked higher than Model Y in a
leaderboard. X could be solving all ‘easy’ questions and fail
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on all ‘hard’ questions, while Y solves some ‘hard’ questions
but a lesser number of questions overall. Should Y be ranked
higher than X then? The ranking depends on the application
scenario— does the user want a model to compulsorily an-
swer the hardest questions or answer more ‘easy’ questions?

Question ‘difficulty’ demarcation is application depen-
dent. For example, in sentiment analysis for movie reviews,
if a model learns to associate ‘not’ with negative sentiment, a
review containing the phrase ‘not bad” might be incorrectly
labeled. Such spurious bias— unintended correlation between
model input and output (Torralba and Efros 2011; Bras et al.
2020)— makes samples ‘easier’ for models to solve. Simi-
larly, in conversational Al, models are often trained on clear
questions (‘where is the nearest restaurant’), but user queries
are seen to often diverge from this training set (Kamath,
Jia, and Liang 2020) (‘I'm hungry’). Such atypical queries
have higher out-of-distribution (OOD) characteristics, and
are consequently ‘harder’ for models to solve.

How do we quantify and acknowledge ‘difficulty’ in
model evaluation? Recently, semantic-textual-similarity
(STS) with respect to the training set has been identified as
an indicator of OOD characteristics (Mishra et al. 2020a).
Similarly, we propose 2 algorithms to quantify spurious bias
in a sample. We also propose WSBias (Weighted Spuri-
ous Bias), an equitable evaluation metric that assigns higher
weights to ‘harder’ samples, extending the design of WOOD
(Weighted OOD) Score (Mishra et al. 2020a).

A model’s perception of sample ‘difficulty’ however, is
based on the confidence it associates with its answer for
each question. Models’ tendency to silently answer incor-
rectly, with high confidence, hinders their deployment. For
example, if Model X incorrectly answers questions with high
confidence, but has higher accuracy than Model Y which
has low confidence for incorrect answers, then Model Y is
preferable, especially in safety critical domains. We quan-
tify a model’s view of difficulty using maximum softmax
probability— a strong baseline which has been used as a
threshold in selective answering (Hendrycks and Gimpel
2016a)— to construct WMProb (Weighted Maximum Prob-
ability), a metric that assigns higher weights to samples
solved with higher confidence.

Based on these considerations, we make the following
novel contributions to enable better model selection for de-
ployment in real life applications:
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Figure 1: Leveraging various evaluation metrics for leader-
board customization, depending on application require-
ments. A robot in a manufacturing industry (Heyer 2010)—
which is a less risky environment, compared to say
healthcare— is unlikely to experience OOD data, computa-
tional constraints, and spurious bias. Thus accuracy can be
used for evaluation.

We present a methodology to probe leaderboards and
check if ‘better’ models are ranked higher.

We propose alternate evaluation metrics for leaderboard
customization based on application specific requirements,
as shown in Figure 1. To the best of our knowledge, we
are the first to propose leaderboard customization.

Our automatic sample annotation approach based on ‘dif-
ficulty’ indicators speeds up conventional evaluation pro-
cesses in all focus areas. For example, current OOD
generalization evaluation has the overhead of identifying
OOD datasets corresponding to each dataset (without a
consistent guideline distinguishing IID from OOD); OOD
datasets might also have their own bias. Automatic an-
notation with STS allows for the identification of sample
subsets that exhibit greater OOD characteristics, thus en-
abling the use of in-house data splits for evaluation.

In order to help users select models best suited to their
applications we leverage ideas from software engineering
(Beizer 1995; Ribeiro et al. 2020) and develop a tool pro-
totype that interactively visualizes how model rankings
change, based on flexible weight assignment to different
splits of data.

We perform a user study with experts from industries with
different focus areas, and show that our prototype helps in
calibrating the proposed metrics by reducing development
and testing effort on average by 41%.

We show how the metrics reduce model performance in-
flation, minimizing the overestimation of capability of Al

Our analysis yields some preliminary observations of the
strengths and weaknesses of 10 models; we recommend
the use of appropriate evaluation metrics to do fair model
evaluation, thus minimizing the gap between research and
the real world.

Experimental Setup

We experiment with ten different models— Bag-of-Words
Sum (BOW-SUM) (Harris 1954), Word2Vec Sum (W2V
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SUM) (Mikolov et al. 2013), GloVe Sum (GLOVE SUM)
(Pennington, Socher, and Manning 2014), Word2Vec LSTM
(W2V LSTM) (Hochreiter and Schmidhuber 1997), GloVe
LSTM (GLOVE LSTM), Word2Vec CNN (W2V CNN) (Le-
Cun, Bengio et al. 1995), GloVe CNN (GLOVE CNN),
BERT Base (BERT BASE) (Devlin et al. 2018), BERT
Large (BERT LARGE) with GELU (Hendrycks and Gim-
pel 2016b), and RoBERTa Large (ROBERTA LARGE) (Liu
et al. 2019), following a recent work on OOD Robustness
(Hendrycks et al. 2020). We analyze these models over two
movie review datasets: (i) SST-2 (Socher et al. 2013)— con-
tains short movie reviews written by experts , and (ii) IMDb
(Maas et al. 2011)- has full-length lay movie reviews. We
train models on SST-2 and evaluate on both SST-2 and
IMDb. This setup ensures both IID (SST-2 test set) and OOD
(IMDb) evaluation.

Metric Formulation

Based on our three-pronged quantification of difficulty, we
adapt WOOD Score, and propose WSBias and WMProb.

Ranking Samples:

WSBias: Samples are ranked in decreasing order of the
amount of spurious bias present. Algorithms 1 and 2 elab-
orate our approach to quantify the presence of spurious bias
across samples. Algorithm 1 is inspired from Curriculum
Learning (Xu et al. 2020) and AFLite (Sakaguchi et al. 2019;
Bras et al. 2020)— a recent technique for adversarial filtering
of dataset biases. Algorithm 2 incorporates bias related to
train and test set overlap (Lewis, Stenetorp, and Riedel 2020;
Gorman and Bedrick 2019). Spurious bias here represents
the ease (% of times) with which a sample is correctly pre-
dicted by linear models on top of ROBERTA features, irre-
spective of inter-model agreement used in measuring sample
uncertainty (Lung et al. 2013; Chen, Sun, and Chen 2014).
WOOD: First, STS is calculated for each test set value with
respect to all train set samples. The STS values for the vary-
ing percentages of the train set data— ranging from the top
1%-100% of the train set, in turn obtained by sorting the
train set samples in descending order of STS against each
test set sample— with respect to each test set sample are av-
eraged. The test samples are then sorted in descending order
based on this averaged STS value. This is done as train-test
similarity is a task dependent hyper-parameter, which can
lead to either inductive or spurious bias (Mishra et al. 2020b;
Gorman and Bedrick 2019).

WMProb: Test samples are ranked in increasing order, based
on the confidence of model prediction for that sample (i.e.,
the maximum softmax probability). WMProb differs from
the previous two metrics in that it operates on a model-
dependent parameter, i.e., prediction confidence, rather than
data-dependent (and model-independent) parameters.

Split Formation and Weight Assignment:

The dataset is divided into splits, based either on user de-
fined thresholds of the sample ‘difficulty’, or such that the
splits are equally populated (Figure 2). Weight assignment
for samples can either be done continuously, or split-wise



Algorithm 1: Bias within Test Set

Algorithm 2: Bias across Train and Test Set

Result: Input: Testset 7', Hyper-Parameters m, t,
Models M -[Logistic Regression, SVM],
Output: Spurious bias values B for each
sample S
Fine-tune ROBERTA on 10% of T" and discard this
10% to get R and find R’s embeddings e;
Evaluation Score E(S) = 0 forall Sin R ;
Correct Evaluation Score C'(S) = 0 forall S'in R ;
forall : € m do
Randomly select trainset of size ¢ from R ;
while y < 2 do
Train M [y] on t using e and evaluate on rest
of Rie.V;
forall S € V do
E(S)=E(S)+1,
if model prediction is correct then
| C(S)=C(S)+1
end
end

end
end
forall S € T do
| B(S) =C(S)/E(S)
end

(Table 1). We also assign penalties to incorrectly answered
samples by multiplying the assigned sample weights with
penalty scores— as defined below.

Formalization:

Let D represent a dataset where 7' is the test set and T'r is the
train set. B is the degree of bias / averaged STS value that a
sample has, p is the model prediction, g is the gold annota-
tion, a (= 1 in our experiments) is a hyper-parameter used
in continuous weight calculation, b; and by are the weights
assigned per split, thy is the splitting parameter, either based
on threshold value or equally populated splits. d and e are the
reward and penalty scores respectively, which are each mul-
tiplied with both by and bo across splits. Here, W ontinuous
and Wyyo—sprir refer to continuous and two-split weighting
schemes respectively.

a
Wcontinuous = E (1)

by, if B > thy (Split 1)
Wiwo—split = . . 2
K plit {bg, otherwise (Split 2) 2)
e {d7 aeren 3

e, otherwise
KW

Metric = % %100 o

When B is the maximum softmax prediction probability,
the value of W o tinuous must be reciprocated in equation
1, and the split assignment must be swapped in equation 2.
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Result: Input: Trainset T'r, Testset T', Z={Logistic
Regression, SVM Linear, SVM RBF, Naive
Bayes} and Output: Spurious bias values B
for each sample S
Correct Evaluation Score C'(S) = 0 forall S'in T ;
forall i € Z do
Train Model Z on T'r and Evaluate on T ;
forall S € T do
if model prediction is correct then
| C(S)=C(S)+1
end
end
end
forall S € T do
| B(S)=C(5)/4
end

Reward and Penalty Scores:

For each sample, d and e are respectively used as reward
and penalty multipliers of the assigned weights. This is done
in order to flexibly score each sample’s contribution to the
overall performance. For example, in Table 1, b; = 1 for
Split 1, by = 2 for Split 2. In Case 1, d = 1 and e = —1,
meaning that in Split 1, correct and incorrect samples are as-
signed scores of b1 * d = 1 and b; * e = —1 respectively;
in Split 2, this follows as by * d = 2 and by x e = —2. d
and e can vary, as shown across the other cases. We also use
quantified spurious bias, average STS, and maximum soft-
max probability values for d and e, as shown in Cases 6-9.

Leaderboard Probing Results

We use WSBias, WOOD, and WMProb Scores to probe
accuracy-based model performance/ranking. Based on the
metric selected, we gain insights of models’ behavior over
the two datasets considered, for different aspects of sample
‘difficulty’, in terms of overall/split-wise performance.

Range of Hyper-Parameters

We vary split numbers from 2 (as in Equation 2) to 7, which
are either equally populated, or formed based on equally
spaced thresholds. We use the splits in combination with all
weighting schemes (as in Table 1) to calculate the metric val-
ues. Higher split numbers have additional weight and thresh-
old hyper-parameters. For example, in the case of 4 splits,
we have weight hyper-parameters of by — b4 and threshold
hyper-parameters of thi-ths. We multiply each weight by
d or e to assign sample scores. For example, the respective
correct/incorrect sample scores per split when b; — by take
values from 1 — 4, and d = 1, e = —0.5 are: +1/-0.5,+2/-
1,+3/-1.5,+4/-2. We also vary the b,, hyper-parameter val-
ues along linear (additive and subtractive), logarithmic, and
square scales. Results for SST-2 show lesser extents of per-
formance inflation and ranking change— though these are
still significant— which we attribute to SST-2 being the IID
dataset. We report results for 7 splits over the IMDb Dataset



o Split 1 Split 2
Case Description b b2 d ¢ Correctp Incorrect Correctp Incorrect

1 Reward = Penalty 1 2 1 -1 1 -1 2 -2

2 Reward Only 1 2 1 0 1 0 2 0

3 Penalty Only 1 2 0 -1 0 -1 0 2

4 Reward > Penalty 1 2 1 -0.5 1 -0.5 2 -1

5 Penalty > Reward 1 2 0.5 -1 0.5 -1 1 -2

6 Continuous Weights 1/B | 1/B 1 -1 1/B —1/B 1/B -1/B
7 Continuous Weights (*) B B 1 -1 B -B B -B
8 Reward = Penalty = B 1 2 | 1/B| -1/B 1/B —1/B 2/B —2/B
9 Reward = Penalty = B (¥) 1 2 B -B B —B 2B —-2B

Table 1: Weighting Schemes Tested for WSBias, WOOD, and WMProb. Here, examples of weighting schemes for 2 splits are
shown, with Split 1 containing the ‘easy’ samples, and Split 2 containing the ‘hard’ samples. In Cases 6 and 8, 1/B refers to
quantified sample ‘difficulty’ and applies to WSBias and WOOD Score. In Cases 7 and 9, B is the ‘difficulty’ for WM Prob.

below; we note that similar results are observed over differ-
ent hyper-parameter considerations for both datasets.

WSBias

GLOVE-LSTM Outperforms ROBERTA-LARGE in
‘Easy’ Questions for Certain Splits: We see that when data
is divided into 2-5 splits, ROBERTA-LARGE, despite hav-
ing higher accuracy, has greater, equal, and lesser errors in
Splits 1 (easiest) - 3 respectively, than GLOVE-LSTM. This
indicates that ROBERTA-LARGE is unable to solve easy
samples efficiently.

Transformers Fail to Answer ‘Easy’ Questions: In Fig-
ure 2, in the parallel coordinates plot (PCP) model perfor-
mance values vary to a greater extent in Splits 1-3, and
converge till they are near identical in Splits 6-7. Trans-
former models (BERT-BASE, BERT-LARGE, ROBERTA-
LARGE) display poor performance on Split 1, with only
ROBERTA-LARGE having a marginally positive value.
This may be attributed to catastrophic forgetting, which oc-
curs due to the larger quantities of data transformer models
are trained on to improve generalization.

Frequent Ranking Changes Across Splits for Word Av-
eraging and GLOVE Embedding Models: In the PCP, the
occurrence of crossed/overlapping lines indicates frequent
ranking changes for the BOW-SUM, GLOVE-LSTM, and
GLOVE-CNN models over all the splits. This result is repli-
cated for all weighting schemes.

Significant Changes in Model Ranking: In the multi-line
chart (MLC) (Figure 3), the scores do not monotonically in-
crease unlike the behavior seen in accuracy. There is a signif-
icant change in model ranking, with 8/10 models changing
positions, as indicated by the red dots. The concurrence of
significant ranking changes using both algorithms indicates
that irrespective of model training, accuracy does not appro-
priately rank models based on spurious bias considerations.
Significant Reduction in Model Performance Inflation:
The overall WSBias score values decrease by: (i) 25%-63%
for Algorithm 1, and (ii) 11%-40% for Algorithm 2, with
respect to accuracy. This indicates that WSBias solves accu-
racy’s inflated model performance reporting.

Transformer Model Performance is the Least Inflated:
We observe in the MLC that the performance drops seen

with WSBias are the least for transformer models, and the
most for word-averaging models. This follows from the in-
sight that transformer models predominantly fail on ‘eas-
ier’ samples, i.e., those which contain greater amounts of
spurious bias. As ‘hard’ samples— with low spurious bias—
are predominantly negatively scored for simpler models, the
overall WSBias Score of the model decreases. This is be-
cause the absolute weights assigned for those samples are
higher. Our findings thus indicate that simpler models are
over-reliant on spurious bias.

WOOD

Model Performance Inflation Increases as % of Training
Set Used to Calculate STS Increases: We note that over-
all model performance increases when larger percentages of
the training set are used in the calculation of averaged STS
values for test samples. This is due to the corresponding de-
crease in the variance of the averaged STS values (values
tend towards 0.5 at 100%).

Split-wise Ranking Varies More for Lesser %s of Train-
ing Set Used to Calculate STS: Due to the decreased vari-
ation effect of averaging STS values for higher percentages
(> 50), there is less fluctuation in the split-wise distributions
of incorrect predictions, especially in thresholded splits. As
a result, the split-wise model ranking changes more fre-
quently when lower percentages are used for STS calcula-
tion. In Figure 2 (25%), this is indicated by clear and fre-
quent line crossings.

Overall Ranking Changes Significantly for All %s of
Training Set Considered: There is significant ranking
change irrespective of STS %, to a greater extent than with
WSBias. For example, in Figure 3, we see that (i) 9/10 mod-
els change their ranking position based on WOOD (calcu-
lated with 25% STS), and (ii) there is a decrease of 15% in
WOOD score values, with respect to accuracy. These respec-
tively indicate that accuracy does not rank appropriately in
the context of model generalization, and also inflates model
performance on OOD datasets. These results are replicated
over all weight and STS % considerations.

W2V-CNN Beats Transformers in Most Splits: The trans-
former models are consistently surpassed by W2V-CNN in
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Figure 2: Split-wise results for each model using WSBias (based on Algorithm 1 — left), WOOD (based on top 25% STS
averaging — middle), and WMProb (right) are shown in the PCPs. Each vertical line indicates the data split considered (Split
1 — Easiest/Lowest Confidence, Split 7 — Hardest/Highest Confidence). Weighting scheme considered is Case 1, for 7 equally

populated splits on the IMDb dataset

Splits 2,3,4,6,7. W2V-CNN also beats transformers in over-
all WOOD Score; this is because transformers fail to solve
samples with low STS (i.e., higher OOD characteristics, ab-
solute weight assignments),and are thus heavily penalized.

WMProb

Some Models are Better Posed to Abstain than Oth-
ers: When splits are formed based on both threshold and
equal population constraints, the number of incorrect predic-
tions is approximately equally distributed across splits for all
models. In particular, ROBERTA-LARGE, BERT-LARGE,
and GLOVE-SUM display near-equal numbers of incor-
rect samples at the ‘easiest’ (high confidence) and ‘hardest’
(low confidence) splits. On the other hand, BERT-BASE,
GLOVE-LSTM, and W2V-LSTM show near-monotonic de-
crease in the number of samples correctly answered from
high to low confidence. For safety critical applications, mod-
els are made to abstain from answering if the maximum soft-
max probability is below a specified threshold. If a lesser
number of incorrect predictions (i.e., higher accuracy) is as-
sociated with high model confidence, that model is preferred
for deployment.

Least Change in Ranking: The MLC (Figure 3) shows that
out of the 3 metrics, accuracy most closely models WM Prob,
with 6/10 models changing ranking position; these changes
are local, with models moving up or down a single rank in
three swapped pairs.

All Models Perform Poorly While Answering With High
Confidence: Unlike the other metrics, here we see that all
models exhibit a sharp decrease in split-wise performance
in the last split, where prediction confidence is highest.
Accuracy Least Inflates Model Performance in the Con-
text of Prediction Confidence: There is only a 5%-16%
decrease in WMProb values when compared to accuracy, in-
dicating that while accuracy inflates performance measure-
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ment by ignoring model confidence, the influence of model
confidence is lesser compared to OOD characteristics and
bias used in the other metrics. Similar results are observed
in other weight/split considerations.

Discussion

We find that GLOVE-LSTM efficiently utilizes spuri-
ous bias to solve ‘easy’ questions. Also, W2V-CNN has
the highest capability for OOD generalization. While
ROBERTA-LARGE has the highest number of correct pre-
dictions per split, it more or less uniformly distributes in-
correct predictions across all splits (i.e., varying levels of
confidence). Therefore, if ROBERTA-LARGE is augmented
with the capability seen in BERT-BASE, GLOVE-LSTM
and W2V-LSTM of better correlation of prediction correct-
ness with prediction confidence, then it may be better suited
for safety critical applications. Additionally, our results over
both datasets show that transformers, in general, fail to solve
‘easy’ questions; the fact that simpler models solve easy
questions more efficiently can be utilized to create ensem-
bles, and subsequently, better architectures. Conducting fur-
ther experiments on different datasets and tasks is a potential
future work to generalize these findings.

Prototype for Leaderboard Probing and
Customization

We develop an interactive tool prototype' — leveraging WS-
Bias, WOOD, and WMProb— to help industry experts probe
and customize leaderboards, as per their deployment sce-
nario requirements. The provision of a platform for such
structured analysis is aimed at helping experts select better

"https://github.com/swarooprm/Leaderboard-Customization
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Figure 3: The MLCs shows the model performance based on Accuracy and WSBias (from Algorithms 1, 2) / WOOD | WMProb.

Here, the yellow dots indicate that the model’s ranking position is
change in ranking position. Weighting scheme considered is Case

models, as well as reducing their pre-deployment develop-
ment and testing effort. We evaluate this prototype in two
stages— (i) Expert Review, and (ii) Detailed User Study.

Expert Review

We present an initial schematic, covering ten models over
the SST-2 and IMDb datasets, to five software testing experts
(6+ years of work experience), each working in one of the
focus areas illustrated in Figure 1. There is a shared belief
among experts that “the use of this tool will reduce testing
time/effort by reducing the number of models initially vet-
ted” (P1, P4). Additionally, “... selecting good base models
reduces testing times downstream the pipeline” (P3). Based
on this initial feedback, we add a feature to custom-load
model results and data (as present in conventional software
testing platforms). This extends the utility of our prototype
from the initial phase of probing and model selection, to ex-
tensive, iterative behavioral testing that occurs in later test-
ing phases, prior to deployment.

User Study

We approach software developers and testing managers of
several commercial product development teams (belong-
ing to 9 companies) across all five focus areas. We first
outline the basic intuitions behind the formulation of the
three metrics, and then provide users with our prototype.
In the visual interface, users can interactively test vari-
ous splits (manual/random/automatic methods- i.e., equally
populated/thresholded splits) and weighting schemes (with
flexible penalty assignment, and discrete/continuous weight-
ing) of data for different metrics. The users are then asked
to fill a Google Form, juxtaposing their prototype usage
with conventional model selection— refers to picking models
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the same as that of accuracy, red dots indicate that there is a
1, for 7 equally populated splits on the IMDb dataset.

from leaderboards (with accuracy as the metric, i.e., uniform
weighting, no penalty). In conventional selection, users have
to iteratively pick some models from the leaderboard, then
test those models in their specific application (through test
cases and deployment), until they find one that works effi-
ciently. Figure 4 summarizes user study results.

Feedback

A total of 32 experts participated in the evaluation of our
prototype. On average, development and testing effort de-
crease of 41% is reported using our customized leader-
board approach, as opposed to conventional model selec-
tion and testing approaches. This decrease is attributed to the
prototype’s “... improvement for data collection time frames
and downstream testing since we know exactly where the
model fails.”(P7). (P6) believes our prototype “can help in
creating model ensembles”, and (P8) that it will “help with
the expedited development and testing of Al models... auto-
suggested model edits through the visual interface would be
interesting”. (P14, P31) say our prototype ... helps compare
in-house and commercial model strengths and weaknesses.
(P20) further attributes this facilitated comparison towards
enabling “...testing of various possible scenarios in deploy-
ment without writing test cases... we do not have to write
separate test cases for stress testing”, and (P26) adds that
“A big part of testing involves creating new datasets in the
sandbox that mimic deployment scenarios. Dataset creation,
annotation, controlling quality, and evaluation are costly.
This tool’s unique method of annotating existing datasets
helps us significantly reduce previously spent effort.”. (P22)
suggests “... exploring the potential expansion of this tool to
assist in customized functional testing of products”.
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Figure 4: Reported Decreases in pre-deployment development and testing. Average : 40.791%

Related Works

Beyond Accuracy: CheckList, a matrix of general linguis-
tic capabilities and test types, has been introduced to enable
better model evaluation and address the performance over-
estimation associated with accuracy (Ribeiro et al. 2020).
Alternate evaluation approaches such as model robustness
to noise (Belinkov and Bisk 2017), Perturbation Sensitiv-
ity Analysis—a generic evaluation framework detects un-
intended model biases related to named entities— (Prab-
hakaran, Hutchinson, and Mitchell 2019), and energy us-
age in models (Henderson et al. 2020) (promoting Green
Al (Schwartz et al. 2019; Mishra and Sachdeva 2020)) have
also been proposed. Our proposed idea of weighting samples
based on ‘hardness’, is metric-independent, and can be used
to revamp other metrics beyond accuracy such as F1 Score.
Evaluation Metrics and Recommendations: The mis-
alignment of automatic metrics with the gold standard of
human evaluation for Text Generation has been studied in
several works (Mathur, Baldwin, and Cohn 2020; Sellam,
Das, and Parikh 2020). Our work is orthogonal to these,
as we have no reference human evaluation, and our idea
of weighted metrics is task-independent. Evaluation met-
ric analysis has been used to provide recommendations
(Peyrard 2019) for gathering human annotations in speci-
fied scoring ranges (Radev et al. 2003). ‘Best practices’ for
reporting experimental results (Dodge et al. 2019), the use
of randomly generated splits (Gorman and Bedrick 2019),
and comparing score distributions on multiple executions
(Reimers and Gurevych 2017) have been recommended. Our
work recommends the reporting of performance in terms of
the weighted metrics, along with accuracy, and their integra-
tion as part of leaderboard customization.

Adversarial Evaluation: Adversarial evaluation tests the
capability of systems to not get distracted by text added to
samples in several different forms (Jia and Liang 2017; Jin
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et al. 2019; Iyyer et al. 2018), intended to mislead models
(Jia et al. 2019). Our work, in contrast, deals with the ad-
versarial attack of leaderboards. Ladder (Blum and Hardt
2015) has been proposed as a reliable leaderboard for ma-
chine learning competitions, by preventing participants from
overfitting to holdout sets. Our objective is orthogonal to this
as it focuses on customizing leaderboards based on applica-
tion specific requirements in industry.

Conclusion

We present a method to adversarially attack leaderboards,
and utilize this to probe model rankings. We find that ‘bet-
ter’ models are not always ranked higher, and therefore pro-
pose new evaluation metrics that enable equitable model
evaluation, by weighting samples based on their hardness
from perspectives of data and model dependencies. We use
these metrics to develop a tool prototype for leaderboard
customization by adapting software engineering concepts.
We perform a user study with experts from nine industries,
having five different focus areas, and find that our prototype
helps in calibrating the proposed metrics by reducing user
development and testing effort on average by 41%. Our met-
rics reduce inflation in model performance, thus rectifying
overestimated capabilities of Al systems. Our results also
give preliminary indications of the strengths and weaknesses
of 10 models. We recommend the use of appropriate evalu-
ation metrics to do fair model evaluation, thus minimizing
the gap between research and the real world. In the future,
we will expand our analysis to model ensembles, as they
are seen to dominate leaderboards more often. Our equitable
evaluation metrics can also be useful in competitions, and
we plan to expand our user study to competitions in future.
We hope the community expands the usage of such evalua-
tion metrics to other domains, such as vision and speech.



Ethics Statement

The broad impact of our work is as follows:

Environmental Impact: Competitions and leaderboards in
general can have a negative impact on climate change, as
increasingly complex models are trained and retrained, re-
quiring more computation time. Our proposed method could
help teams reduce the exploration space to find a good
model, and thus help reduce that team’s overall carbon emis-
sions.

Towards a Fair Leaderboard: Our definition of ‘diffi-
culty’ can be extended based on several different perspec-
tives. A viable application of this is a ‘fair’ customized
leaderboard, where models having higher gender/racial bias
will be heavily penalized, preventing them from dominating
leaderboards.

Selecting the Best Natural Language Understanding
(NLU) Systems: NLU requires a variety of linguistic ca-
pabilities and reasoning skills. Incorporating these require-
ments systematically as ‘difficulties’ in our framework will
enable better selection of top NLU systems.
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