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Figure 1: We study the complexity of alluvial diagrams with the following workflow: (1) We generate a publicly-available testing
dataset of alluvial diagrams that vary complexity based on a combination of features. (2) We conduct two crowdsourced user
studies to measure the task performance and perceived complexity of the charts. (3) Applying a combination of factor and
regression analysis to weight feature contributions, (4) we model the complexity of alluvial diagrams.

ABSTRACT

Alluvial diagrams are a popular technique for visualizing flow and
relational data. However, successfully reading and interpreting the
data shown in an alluvial diagram is likely influenced by factors
such as data volume, complexity, and chart layout. To understand
how alluvial diagram consumption is impacted by its visual features,
we conduct two crowdsourced user studies with a set of alluvial
diagrams of varying complexity, and examine (i) participant perfor-
mance on analysis tasks, and (ii) the perceived complexity of the
charts. Using the study results, we employ Bayesian modelling to
predict participant classification of diagram complexity. We find
that, while multiple visual features are important in contributing to
alluvial diagram complexity, interestingly the importance of features
seems to depend on the type of complexity being modeled, i.e. task
complexity vs. perceived complexity.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques—Empirical studies in visualization;

1 INTRODUCTION

Alluvial diagrams are a type of Sankey diagram that visualize in-
formation flow between entity groups. In contrast to the general
definition of Sankey diagrams (see Figure 2), which permit flow
to go in any direction, alluvial diagrams group related entities into
columns which are aligned along a common axis (e.g., going left-to-
right), with the constraint that flow data can only belong to one entity
in each group/column. As the height of the flow between entities
shows data quantity, alluvial diagrams are a popular technique for
visualizing time-varying network data, flow-based data, and rela-
tionships across multidimensional data, and have been applied in
domains that include market/timeline analysis, network monitoring,
and energy and power flows [26, 27, 29].

*e-mail: aarunku5@asu.edu
†e-mail: sginjpal@asu.edu
‡e-mail: chris.bryan@asu.edu

Unfortunately, interpreting an alluvial diagram can become a
difficult task as the chart scales in size, complexity, and amount of
information shown. Additionally, prior research has shown that more
complex (and less familiar) visualizations, such as flow diagrams [3],
are less readable and therefore harder to interpret [5, 6].

Figure 2: An example Sankey dia-
gram showing energy flow.

To better understand what
makes alluvial diagrams “com-
plex”, we conduct and ana-
lyze two crowdsourced user
studies. Figure 1 shows the
steps. (1) We create a syn-
thetic dataset of alluvial dia-
grams with varying estimated
complexity (a value called Sa)
by statistically controlling the
underlying dataset properties
for each chart. (2) We conduct
two crowdsourced user studies. In Study #1, participants perform
four analysis tasks on the diagrams. In Study #2, participants com-
pare pairs of diagrams to rate their relative, perceived complexities.
(3) Using the collected study data, we perform regression and fac-
tor analysis to weight the impact of visual features in determining
complexity, (4) and use these as Bayesian priors to classify alluvial
diagrams for task performance and perceived complexity (i.e., la-
bel alluvial diagrams as having easy, medium, or hard complexity).
While we find that all of the considered visual features significantly
contribute towards modelling complexity, we interestingly find that
the most important factor changes depending on the type of complex-
ity (i.e., task complexity vs. perceived complexity) being modeled.

To our knowledge, this is the first research that empirically
assesses, quantifies, and models the complexity of alluvial dia-
grams. Our modelling approach is also replicable for other types
of visualization techniques. We additionally include a robust
set of supplemental materials for use by the research commu-
nity, including dataset generation scripts, chart datasets and ren-
dered image files, and collected study data, publicly available at
https://tinyurl.com/386adhwf.
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2 RELATED WORK

Optimizing Alluvial Diagrams. As mentioned in the Introduction,
alluvial diagrams are a specific type of Sankey diagram with ad-
ditional constraints for showing flow and relational data. Similar
to how node-link diagrams optimize the placement of nodes and
edges for readability (such as via force-directed layouts), algorithms
for creating alluvial diagrams also try to optimize the placement of
entities/nodes [2,33]. For both techniques, a poor organization of en-
tities/nodes can lead to increased edge/flow crossings, lowering the
chart’s readability. However, in contrast to node-link diagrams (and
Sankey diagrams) which can freely place nodes anywhere, alluvial
diagrams only allow (i) an entity to be moved within its column, and
(ii) if the dataset is not time-based, columns may be swapped. Simi-
lar to minimizing edge crossings in node-link diagrams, minimizing
flow crossings for alluvial diagrams is an NP-hard problem [7]. Re-
cent optimization efforts for Sankey/alluvial diagrams have utilized
linear programming [2, 33]. The alluvial diagrams in our dataset are
created using the Plotly library,1 which uses the d3-sankey package2

for computing layout.
Visualization Readability and Effectiveness. Broadly, the

topic of graphical perception is concerned with how visualizations
are perceived and interpreted [4]. Perception and readability de-
pends on many factors, including the visual encodings being used
(i.e., the marks and channels), the number of data dimensions being
encoded [16, 24, 25], the amount of data shown [19], how the chart
is styled [20], what rhetorical elements are present [15], and even
the current cognitive focus of the person viewing the chart [13].

Bayesian statistics have been found to reliably model human
cognition, and further allow for the principled incorporation of ‘ir-
rational’ behavior [11, 22, 23]. Bayesian modelling has been used
to measure the change of people’s beliefs on visualization view-
ing [8,21], and has also been extrapolated to define a signal-detection
approach to reason about visualization-based inference [14]. Such
approaches can be extrapolated to predict what users find ‘interest-
ing’ in a visualization, and further to formalize the effectiveness of
visualization messaging.

Accurate prior elicitation is a challenge in using Bayesian meth-
ods; to circumvent this, we directly set priors based on the visual
features used as complexity control factors. Previous work has
shown that frequency format based representation of information
helps participants better contextualize priors [9, 32]. We accordingly
familiarize participants with the visual features of alluvial diagrams
and how their counts are associated with diagram complexity during
training.

Accuracy, task-driven evaluation, and perception of visual proper-
ties (such as color, shape, and size) in visualizations [1,18,28,30,34]
have also been used to inform effective visualization design. The
framing of effectiveness in past work is closely related with our
framing of complexity; however, to the best of our knowledge, there
has been no definition of a mathematical formula for complexity for
a given visualization type.

3 STUDIES

Dataset. To conduct our studies, we first created a dataset of syn-
thetic alluvial diagrams. Each diagram is rendered as a 1920×1080
PNG image with a uniform styling of grey flow arcs, blue entity
rectangles, and flow going left-to-right.

A Python script created the underlying data for each chart by
controlling the following four factors: (1) The number of timesteps,
t, was randomly selected between 3–6. (2) The number of entities
for each timestep was randomly selected between 2–5. (3) The total
flow was either 30, 50, or 80 units, and was based on the amount
of selected timesteps and entities. (4) Finally, the flow size for each

1https://plotly.com/python/
2https://github.com/d3/d3-sankey

flow arc was between 25–50% of an entity’s total flow, with the
constraint that the largest flow going into an entity was at least 5%
larger than the next largest flow for that entity. All bounds were set
to ensure that flows in the generated diagrams were at least 10px
thick, to make them sufficiently distinguishable for the purpose of
study tasks. The resultant datasets were rendered using the Plotly
Python library. For each created chart, we also record the number of
flow crossings, where two flow arcs cross over each other.

Figure 3: This histogram shows
the distribution of chart complexi-
ties of the alluvial diagrams used
in the studies.

In total, we created 48
charts, using Equation 1 to pro-
vide an estimated complexity
score Sa for a given chart a as
the sum of its timesteps t, en-
tities e, flow arcs f , and flow
crossings c.3

Sa = ta + ea + fa + ca (1)

Figure 3 shows the distribu-
tion of the 48 charts based on
their Sa values, and Figure 4 shows three examples of created charts.
The full set of chart images and datasets (along with the Python
script) is available in the supplementary materials.

(a) S1 = 17 (b) S47 = 204 (c) S45 = 306

Figure 4: Three example alluvial diagrams used in the studies (a =
1,47, 45), along with their estimated complexity score Sa.

Study #1 Design. Participants were shown a sequence of alluvial
diagrams (one per trial) and asked to perform one of four tasks for
each chart: (T1) Between which two timesteps are the most number
of flows? (T2) Which entity in the diagram is the largest? (T3)
Which flow arc in the diagram is the largest? (T4) Which entity has
the most total flow activity (number of arcs entering and exiting)?

Each task requires a participant to examine the entire alluvial
diagram to answer, entering their response into an input box. Of
the 48 charts, 3 were reserved for training (each task was performed
twice in training, for 8 total training trials). The remaining 45
charts were used for the main study. Each participant completed
19 trials during a session. For each trial, one chart and task were
randomly selected and shown to the participant (no chart appeared
twice during a session). An attention check appeared after the 10th
question. Before running the main study, a pilot study was conducted
with 3 participants to validate the design.

Study #1 Participants. We recruited 100 participants on Pro-
lific4 using the following user filters: (i) self-reported normal or
corrected-to-normal vision, (ii) a first language of English, (iii) lo-
cated in a U.S. college pursuing an undergraduate degree or higher,
(iv) at least 100 previously completed Prolific surveys, and (v) an
approval rate of 90% or more.

Participants were paid $2.50 for participation. Study #1 duration
averaged just over 18.5 minutes (median 15:09), resulting in an
average hourly pay of $8.10 (median $9.90). Qualtrics [10] was used
to display the study and store participant responses. Nine participants
were excluded as their answers did not meet the expected format,
or their performance indicated they did not understand the study
questions during/after training.

3Total flow is not considered in Equation 1 as chart sizes were normalized
to fit the 1920×1080 PNG filesize.

4https://www.prolific.co
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Study #2 Design. For each trial in Study #2, participants were
shown a pair of alluvial diagrams displayed side-by-side and asked
to rate which chart was more complex (or if the charts were of
approximately equal complexity). Each participant completed 31
trials, where each trial randomly selected two of the 45 charts for
comparison (990 total pairs possible). An attention check appeared
after the 15th question. Three training trials were performed before
beginning the main study. Similar to Study #1, a pilot study was first
conducted to validate the design with 3 users.

Study #2 Participants. We recruited 150 participants on Prolific
with the same filter settings as Study #1, again using Qualtrics to
display trials and record responses. Participants were paid $1.25
for participation. Study #2 duration was just over 7.5 minutes on
average (median 6:06), resulting in an average hourly pay of $10.00
(median $12.29). No participants were excluded from this study,
and each chart pair was rated either 4 or 5 times.

(a) T1: Most Active Timestep, R2 = 0.656 (b) T2: Largest Entity, R2 = 0.642

(c) T3: Largest Flow, R2 = 0.690 (d) T4: Most Active Entity, R2 = 0.665

Figure 5: Study #1 results: For tasks T1–T4, each point shows
one alluvial diagram in the dataset, plotted by its task performance
accuracy (vertical axis) and Sa value (horizontal axis), fitted with a
regression line and 95% confidence interval bands. The R2 value is
also reported for each task (p < 0.001 for all tasks).

Task Accuracy (and SD)

T1: Most Active Timestep 88.37±0.95
T2: Largest Entity 57.10±2.04
T3: Largest Flow 79.40±1.59
T4: Most Active Entity 68.93±2.00

Table 1: Performance results for Study 1.

4 RESULTS

Study 1 Results. Table #1 summarizes the task performance for
T1–T4 (i.e., the percent of responses that were correct). T1 had (by
far) the highest performance, and T2 the lowest. These results are
reflected in Figure 5, which plots, for each task, chart performance
against its Sa value. While the performance scores for individual
chart-task pairs can vary, each of the four fitted regression lines
indicates a similar trend: as a chart’s Sa value increases, its task
performance decreases.

Study 2 Results. For each trial in Study #2, participants com-
pared a pair of charts with relative complexity ratings. We transform
these relative ratings into an overall list of complexity rankings
with the following process: Each diagram starts with a score of
0, and ±10 points are added based whether it is rated more/less
complex in a trial. No points are added if two charts are rated

equally complex in a trial. Summing the scores from all the trials
determines a chart’s overall perceived complexity. Figure 6 shows
these overall perceived complexity values plotted against Sa val-
ues. Like Study #1, we fit a regression line which indicates a high
correlation between a chart’s perceived complexity and its Sa value.

Figure 6: Study #2 results: each
point shows one alluvial dia-
gram in the dataset plotted by
its perceived complexity (vertical
axis) and its Sa value (horizontal
axis), fitted with a regression line
(R2=0.981, p < 0.001) and 95%
confidence interval bands.

5 BAYESIAN COMPLEX-
ITY MODEL

Bayesian modelling has been
used to measure the effective-
ness of visualizations [14]. Ad-
ditionally, the visual features
analyzed are frequency-based,
and can therefore better inform
participants of the significance
of the prior, in line with previ-
ous work [32]. We hence aim
to mimic our study user’s as-
sessment of alluvial diagram
complexity, except we bin the
diagrams into discrete cate-
gories of easy, medium, and
hard complexity, given the occurrence of considered visual features.

For each study, we analyze the effects of four independent vari-
ables, the visual features number of timesteps, number of flows,
number of entities, and number of flow crossings, on the measured
complexity data obtained from both studies (for Study #1, the per-
formance for each task, and for Study #2, the perceived complexity
scores). To fine-tune our estimated complexity score, we perform
iterations of factor (PCA/Unrotated/Varimax) and linear/multiple
regression analyses [12, 17] to determine the effect strength of each
factor (i.e., each visual feature); this is done with the aim of preserv-
ing statistical power during analyses.5

Study 1 Modelling. As a first step, we ran regressions of each vi-
sual feature against each task individually, to examine the nature and
extent of their relationships5. For each task, each of the four inde-
pendent variables had a significant positive correlation (all p<0.001),
though for all four tasks number of entities had the highest R2 value
(T1=0.66, T2=0.641, T3=0.720, T4=0.682), which indicates it had
the most impact on performance.

We next perform a factor analysis on the tasks, to verify if they are
suitable for constructing summative dependent variables. We find
that T2, T3, and T4 load onto a single factor, where T2 is strongly
significant (-0.51), T3 (-0.37) and T4(-0.31) are weakly significant,
and T1 (-0.22) fails to load. Accordingly, we develop a Acc3, a
summated dependent variable comprised of T2, T3, and T4; we also
construct an alternate dependent variable, Acc4, summated over all
four tasks, to examine how T 1’s inclusion impacts the importance of
the four visual features. We perform feature-wise regression against
Acc3 and Acc4; number of entities again serves as the strongest
predictor (R2 is 0.704 for Acc4, 0.712 for Acc3).

On performing factor analysis over the four independent vari-
ables, we find all four features load onto a single component,
and are all strongly significant (number of timesteps=0.9, number
of flows=0.939, number of flow crossings=0.86, number of enti-
ties=0.930), where number of flows has the highest significance. We
construct an independent summated feature (F) variable, and run it
against all the dependent variables (i.e., task performance); number
of entities remains the highest predictor throughout.

Next, we perform k-fold cross validation (k=5) to update Equa-
tion 1 based on the standardized regression coefficients obtained for
multiple regression of features against Acc3 and Acc4 respectively.
We retain all individual features as though they all load onto a single

5Detailed statistics are fully reported in the supplementary material



(a) B3, Accuracy=0.788±0.043, RMSE=0.118±0.017

(b) B4, Accuracy=0.742±0.036, RMSE=0.102±0.019

(c) Bv.c., Accuracy=0.806±0.069, RMSE=0.257±0.123

Figure 7: These mosaic charts show the diagram-wise Bayesian
prediction frequency (i.e., binning percentage) from the(a) Acc4, (b)
Acc3, and (c) Sv.c. models when classifying our dataset of alluvial
diagrams into classes of easy (< 0.33), medium (>= 0.33and <
0.67), and hard (>= 0.67). Each vertical slot corresponds to an
alluvial diagram, ordered by Sa value from least to most complex.

factor, each feature is also found to have a statistically significant
impact on the performance variables in isolation (i.e., p<0.001).
Number of entities and number of flows exceed and perform on par
with F respectively; additionally, the overall standard deviation in
R2 over all features and F is 0.04 for both summated dependent
variables. This allows us to weight each feature as an individual
contributor, as follows:

Acc3(a) = 0.222(±0.018)ta +0.282(±0.011)ea (2)
+0.267(±0.009) fa +0.228(±0.019)ca

Acc4(a) = 0.2566(±0.086)ta +0.234(±0.046)ea (3)
+0.206(±0.088) fa +0.302(±0.137)ca

We use these equations to construct two Bayesian priors, and train
two Bayesian models (B3, B4) to predict the performance accuracy
class of the held-out test-set (20%), as easy/medium/hard based on
chart complexity falling in the lowest, middle, or highest-third bins
of the dataset. Prediction trends for B3 and B4 are summarized in
Figure 7(a)-(b), with repeated k-fold cross validation (k=5, n=10),
such that each chart is classified at least 5 times. We analyze this
chart after the Study #2 model (Bv.c.) is introduced shortly.

Study 2 Modelling. An initial regression on perceived complex-
ity (%) shows that number of entities again serves as the best fitting
model (R2=0.637); all independent variables are positively corre-
lated with perceived complexity, with p<0.001 for all regressions.
We also run a regression of F against the perceived complexity, and
find that number of entities still serves as the best predictor. Overall,
the features contribute in a more balanced manner compared to the
regression results against summated performances in Study #1, with
relatively closer R2 values (σ = 0.03).

We again update Equation 1, only now for Study #2 we model
perceived visual complexity (Sv.c.):

Sv.c.(a) = 0.240(±0.036)ta +0.247(±0.061)ea (4)
+0.314(±0.073) fa +0.197(±0.129)ca

In contrast to Equations 2 and 3, number of flows is now the
highest weighted factor, despite number of groups being the best
predictor. We use Equation 4 to construct a Bayesian prior and

train a Bayesian model (Bv.c.) to similarly predict the complexity
class of the alluvial diagrams in the test set as easy/medium/hard in
Figure 7(c). Compared to B3 and B4, we find that Bv.c. most closely
fits complexity classification patterns, and tends to consistently bin
diagrams. B3 and B4 display greater discrepancies during the clas-
sification of medium and hard complexity diagrams. B4 displays
the highest classification variability over epochs; this is expected
as task T1 behaves as an outlier, which is taken into account when
modelling based on summated accuracy over all tasks (Acc4).

6 DISCUSSION

Based on Equations 2–4, we see that the four considered visual fea-
tures have similar weights in modelling the complexity of an alluvial
diagram. Interestingly, we find that when excluding the “easy task”
T1 in Equation 2, number of entities becomes the most important
factor, though when T1 is included, number of flow crossings has
the highest weight (Equation 3). When considering perceived com-
plexity (Equation 4), number of flows is the most important variable.
In one sense, the high dependencies between variables makes sense:
the number of entities in a dataset should highly correlate with the
number of flows and number of flow crossings. However, it is in-
teresting that, depending on how you model complexity, different
features seem to emerge as most influential, though this requires
further experiments to confirm. It is possible that, as flow arcs are
the visual feature in alluvial diagrams that take up the most pixel
space (thus leading to higher data-ink ratio [31]), the number of
flows has a higher influence on how a person perceives a chart’s
complexity, albeit only slightly. This also provides a possible reason
that number of flows is considered the most important feature for the
summative variable in the factor analysis conducted in Section 5.

Our approach for modelling complexity (or effectiveness, as de-
fined in Section 2) is extensible to other types of visualizations,
including similar techniques like Sankey diagrams, node-link dia-
grams, and even parallel coordinate plots. However, since Sankey
diagrams and node-link diagrams have flows/edges that can go in
any direction, more nuanced visual features should be considered,
such as flow/edge length and direction. Moreover, any visualization
technique (even if dissimilar to alluvial diagrams) can be modelled
by selecting an appropriate set of visual features. For example, a bar
chart’s features could include bar height, bar width, number of bars,
the distance between bars, etc.

We also note some limitations in our studies. For example,
Study #1 only considers four types of tasks and only measures
performance using accuracy. This could be, for example, why T1
had higher performance relative to T2–T4, and therefore did not
significantly load during factor analysis. Including results from
other metrics such as response time may align T1 more with T2–T4
when modelling complexity. Additionally, generating more diverse
alluvial diagrams (i.e., more dataset variation between charts), or
considering other visual features (such as entities/flows with varying
color hues) will likely affect the resultant models.

7 CONCLUSION

For alluvial diagrams, our research indicates that complexity is,
in part, contingent on the user’s current task, and that different
visual features contribute to complexity differently depending on
the current task. However, further experiments are necessary to
better understand how alluvial diagram complexity is due to the
combined effects of its visual features. Additionally, we believe that
our analysis and modelling approach can be employed in evaluating
complexity across more diverse visualization techniques, which we
plan to study in future experiments.
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